The Michigan Trauma Quality Improvement Program

Ypsilanti, MI February 2, 2016

Disclosures

Salary Support for MTQIP from BCBSM/BCN

- Mark Hemmila
- Judy Mikhail
- Jill Jakubus
- Anne Cain-Nielsen

Welcome/Introductions

MTQIP Clinical Reviewers

New Centers

- Providence-Providence Park Hospital, Novi
- St. Marys Mercy Livonia Hospital, Livonia
- State of Michigan Trauma Epidemiologist
 - Allen Stout, MS

Welcome/Introductions

- Guest Speakers
- Himanshu Patel, MD
 - University of Michigan, Cardiac Surgery
 - Blunt Traumatic Aortic Injury
- Elliott Haut, MD
 - Johns Hopkins University, Acute Care Surgery
 - Venous Thromboembolism

ACS-TQIP

- Center Report
 - Fall 2015
 - Spring 2016
- Michigan Report
 - Today
- No Invoices
 - **2015**
 - **2016**

Data Submission

- DI
 - V5
 - ?
- CDM
 - Contract signed
 - Target June 2016
- February Submission
 - 7/1/2014 to 10/30/2015 (minimum)

Future Meetings

- Spring
 - Wednesday May 18, 2016
 - Mackinaw Island, Mission Point Resort
- Spring with MANS
 - Friday May 20, 2015
 - Petoskey, Bay Harbor Resort,
- Spring (Registrars and MCR's)
 - Tuesday June 7, 2016
 - Ann Arbor, NCRC

MTQIP/MANS

Meeting

- Friday May 20, 2016
- Petoskey, Bay Harbor Resort
- Attendees
 - Neurosurgeons
 - TPD, TPM, MCR
- Accommodations
 - Hotel covered on Thurs night
 - Contact Jennifer O'Gorman

MTQIP/MANS

Planning

- Neurosurgeons
 - Robert Johnson, MD
 - * Rick Olsen, MD
 - ✤ Jason Heth, MD
 - Sanjay Patra, MD
- MTQIP Advisory Committee
- You

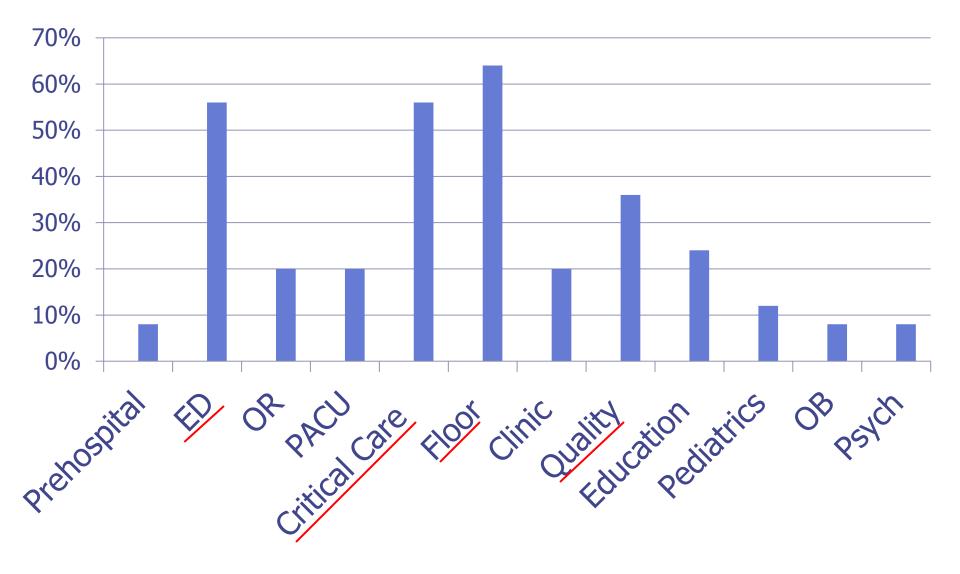
MTQIP/MANS - Summary

- MTQIP Data
- Perspectives
- Survey
- Controversial Topics
 - Panel

https://mansmtqipjointmeeting.splashthat.com/

MCR Survey Results MTQIP 2015 and 2016 CQI Performance Index Scoring

Judy Mikhail, PhD, MBA, RN


WELCOME: 30 NEW MCR'S

MCR SURVEY

MCR Nursing Experience

Combined RN Experience (yrs): 388
Average (yrs): 16
Range (yrs): 5-34

MCR Work Experience

MCR Trauma Experience

- Rate your experience caring for trauma patients (1 low to 5 high)
 - Low 4
 - Moderate 10
 - High 11
 - Weighted Average: 4.24

MCR QI Experience

- Rate your experience with quality improvement activities (1 low to 5 high)
 - Low 4
 - Occasional 5
 - Moderate 11
 - High 5
 - Weighted Average: 3.68

MCR Support

Mentoring

- One on one mentoring
- Monthly conference calls
- Blue Jeans Conferencing
- Lecture series
- What ever it takes....

Communication Clarification

• MCR's and TPM's

2016 Performance Index Results

2016 Performance Index

Measure	Weight	Measure Description	Points	
#1	10	Data Submission (No points for partial/incomplete submissions)		
		On time and complete 3 of 3 times	10	
		On time and complete 2 of 3 times	5	
		On time and complete 1 of 3 times	0	
#2	20	Meeting Participation-Surgeon		
		Participated in 3 of 3 meetings	20	20%
		Participated in 2 of 3 meetings	10	U Z
		Participated in 1 of 3 meetings	5	0 E
		Participated in 0 of 3 meetings	0	
#3	10	Meeting Participation-Clinical Reviewer or Trauma Program Manager		PARTICIPATION (50%)
		Participated in 3 of 3 meetings	15	PAR
		Participated in 2 of 3 meetings	10	
		Participated in 1 of 3 meetings	5	
		Participated in 0 of 3 meetings	0	
#4	10	Meeting Participation-Trauma Registrar(s)		
		Participated in the annual June Registrar meeting	5	
		Did not participate	0	

2016 Performance Index

Measure	Weight	Measure Description	Points			
#1	10	Data Submission (No points for partial/incomplete submissions)				
		On time and complete 3 of 3 times	10			
		On time and complete 2 of 3 times	5			
		On time and complete 1 of 3 times	0			
Example: If call for data is for 3/1/14 -6/30/15						
To receive points you should submit cases into June 2015						

2016 New Addition

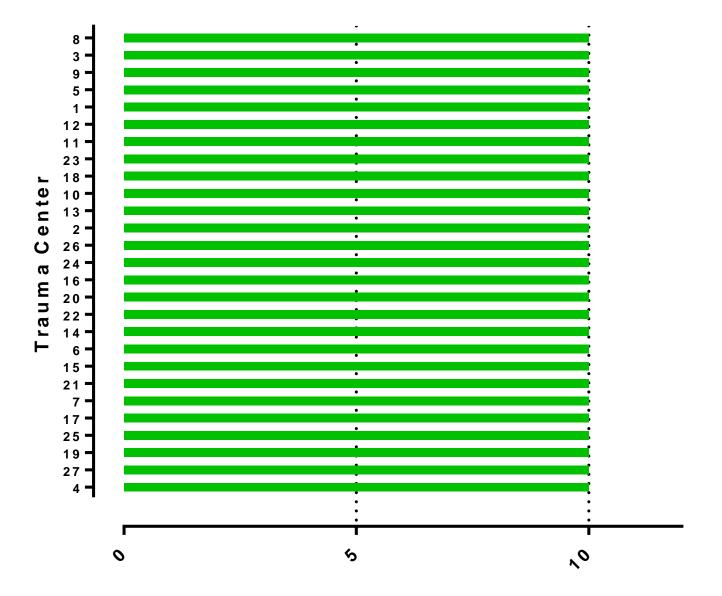
Collaborative Wide Initiative: Graded as a Group not as Individual Center

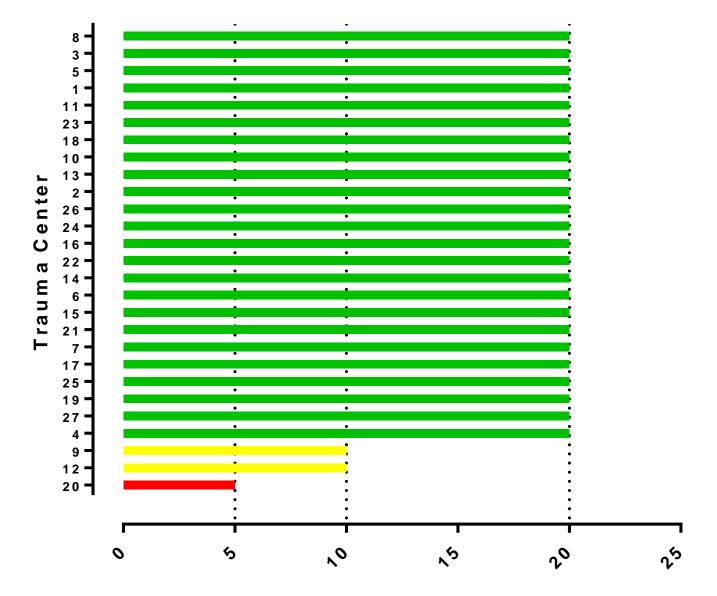
We only succeed if we all succeed

2016 Performance Index

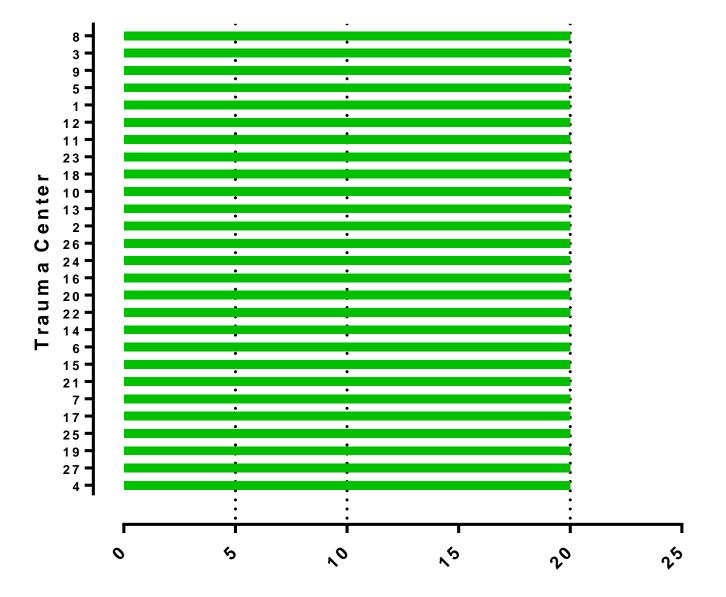
#5	10	Data Accuracy	First Validation Visit	Two or > Validation Visits		
			Error Rate	Error Rate		
		5 Star Validation	0-4.5%	0-4.5%	10	
		4 Star Validation	4.6-5.5%	4.6-5.5%	10 8	
		3 Star Validation	5.6-8.0%	5.6-7.0%	5	
		2 Star Validation	8.1-9.0%	7.1-8.0%	3	
		1 Star Validation	>9.0%	>8.0%	0	
#6	10	Site Specific Quality Initiative Using MTQIP Data				
		Developed and implemented with evidence of improvement				
		Developed and implemented with no evidence of improvement				
		Not developed or implemented				(50
#7	10	10 Mean Ratio of Packed Red Blood Cells (PRBC) to Fresh Frozen Plasma (FFP) in Patients Transfused ≥5 Units RBC In First 4 Hrs (18 Months Data) Tier 1: ≤ 1.5				
		Tier 2: 1.6-2.0			10	PERFORMANCE (50%)
		Tier 3: 2.1-2.5			5	Р
		Tier 4: >2.5			0	
#8	10	Admitted Patients (Trauma Service-C	ohort 2) With Initiation o	f Venous		
		Thromboembolism (VTE) Prophylaxis	s <48 Hours After Arrival (18 Months Data)		
		>50%		-	10	
		<u>≥40%</u>			5	
		 <40%			0	
#9	10	COLLABORATIVE WIDE INITIATIVE: Inferior Vena Cava Filter Use				
		<u><</u> 1.5			10	
		>1.5			0	

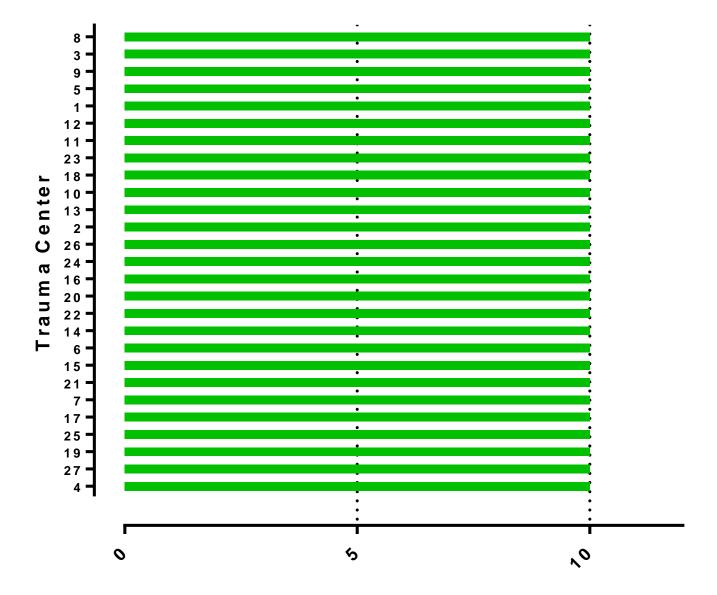
2015 Performance Index Results

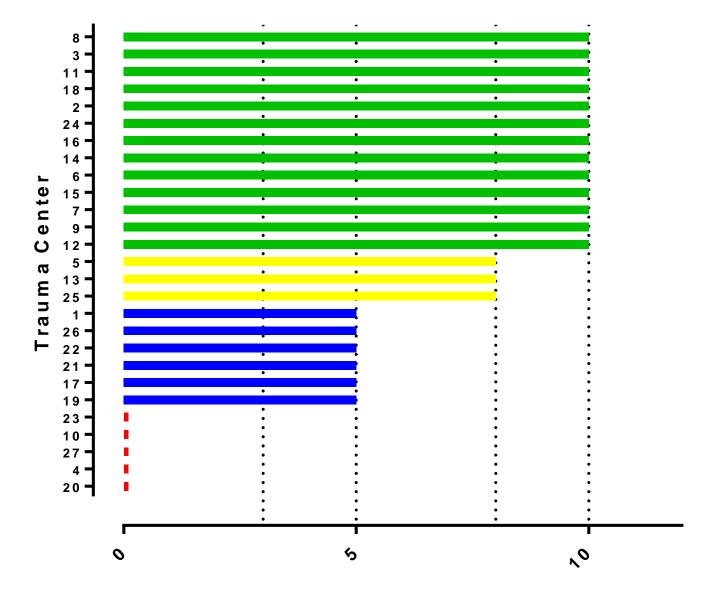



MTQIP 2015 CQI Performance Index

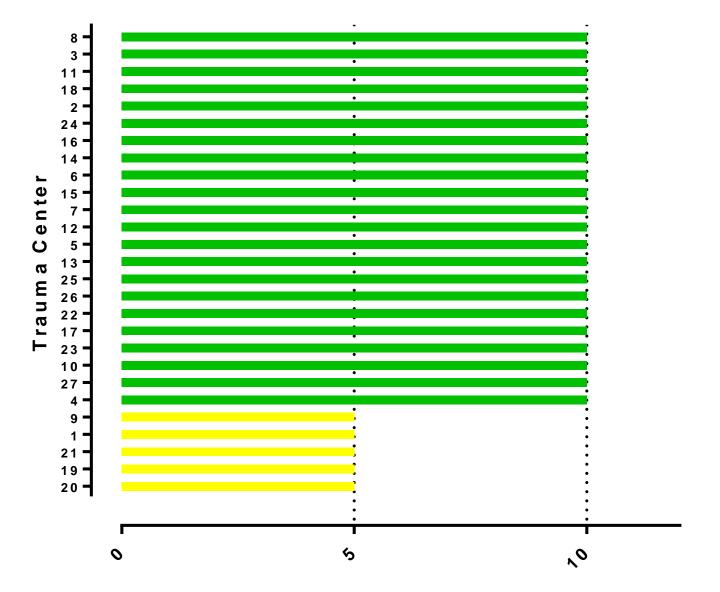
- Participation 60%
 - Data Submission
 - Surgeon Lead
 - Trauma Program Manager/Registrar
 - Presentation/Use of MTQIP data (last year)
- Performance 40%
 - Data Validation
 - Site-specific QI project
 - Massive Transfusion Protocol
 - VTE Prophylaxis


Data Submission

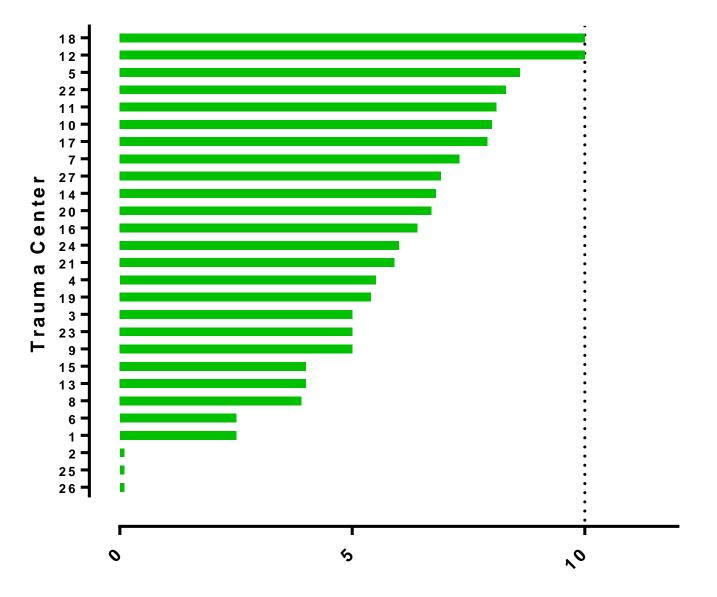

Meeting Participation Surgeon


Meeting Participation Mang./Reg.

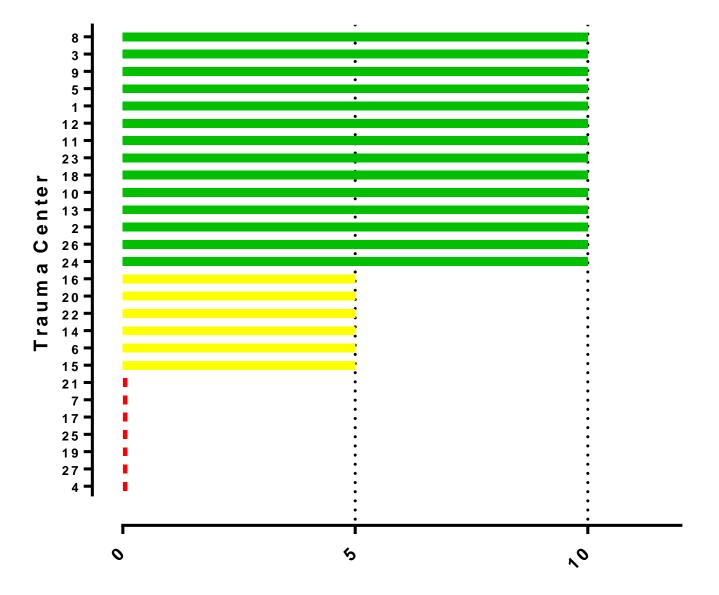
Surgeon Presents MTQIP Data

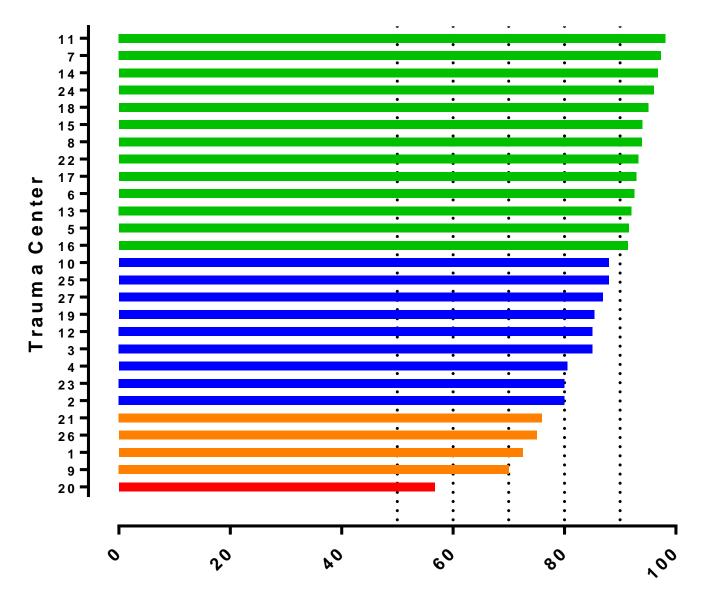


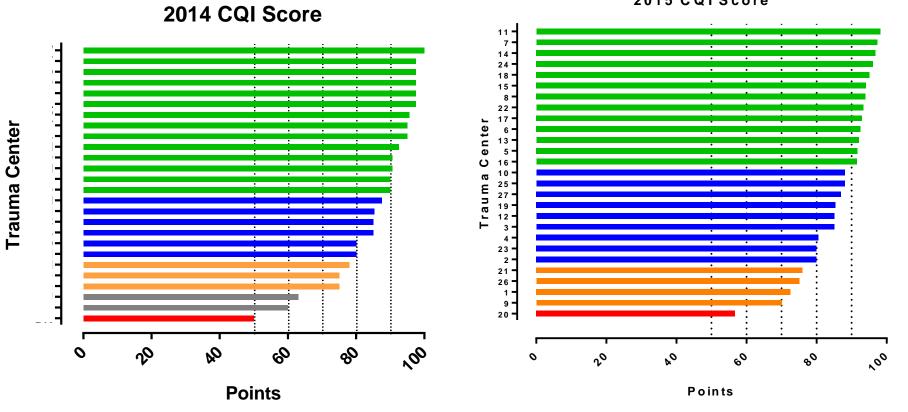
Accuracy of Data



Points


Site Specific QI Project


PRBC to **Plasma** Ratio


Timely VTE Prophylaxis

2015 CQI Score

Points

2015 CQI Score

Mean 85.3

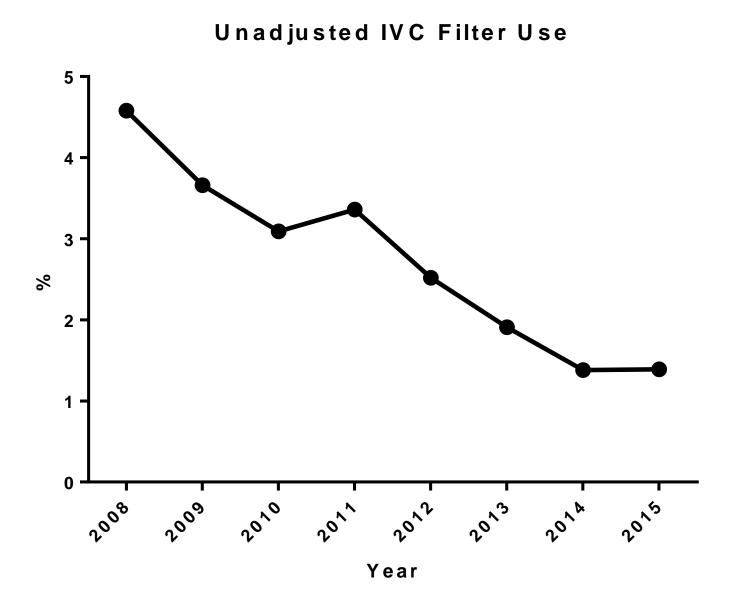
Mean 86.4

It's not perfect – What we have learned

- Attention grabber
- Getting points is achievable by all
- Data
 - Scoring due 1st Quarter
 - Last data submission in Oct
 - Use data from Jan 2014 through Sept 2015
- Reactionary / Thoughtful
- Perceptions vs. Reality e.g. Blood
 - 2014: 145 points over 26 centers = 5.58 mean
 - 2015: 149.7 points over 27 centers = 5.54 mean

MTQIP Data/Reports

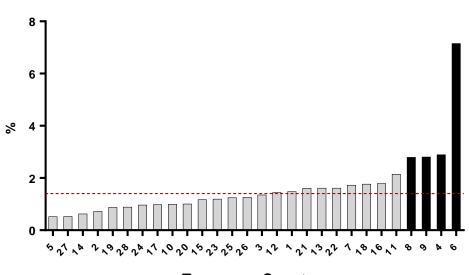
Jill Jakubus, PA-C, MHSA Mark Hemmila, MD



Collaborative-Wide Metric IVC Filter Placement

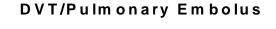
2016 Group Project

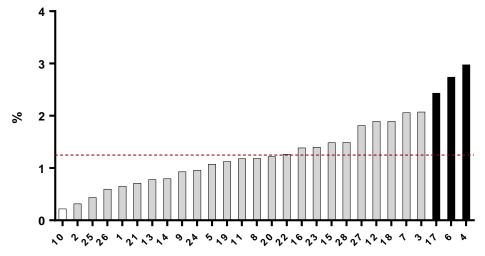
- Target is 1.5% for 2016 reporting
- If collaborative mean is ≤ 1.5% every center gets 10 points.
- If collaborative mean is > 1.5% every center gets 0 points.
- At or near target maintain performance
- Above target
 - Educate providers
 - Assistance from collaborative members

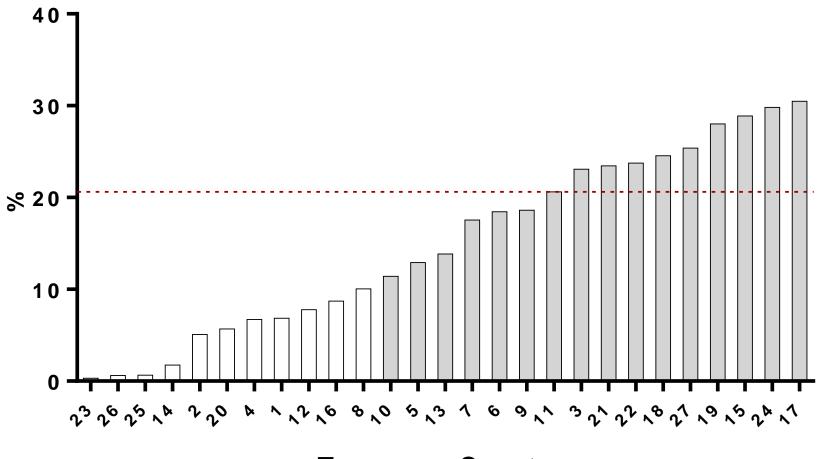


Risk and Reliability Adjusted IVC Filter Use 8 6 % 4 Mean = 1.4%2 0

Trauma Center


3/1/14 - 9/30/15


Pg. 32

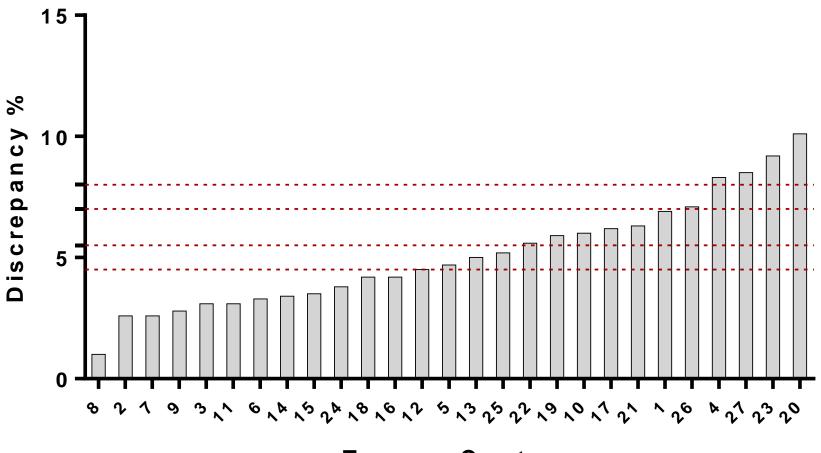

Risk and Reliability Adjusted IVC Filter Use

Trauma Center

Trauma Center

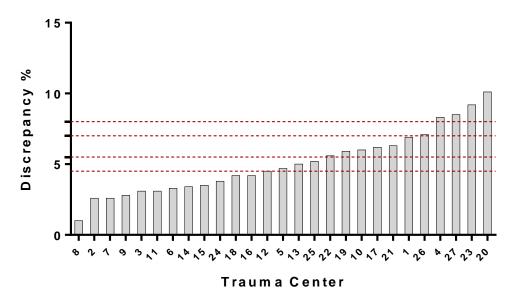
Trauma Center

Hospital Metrics

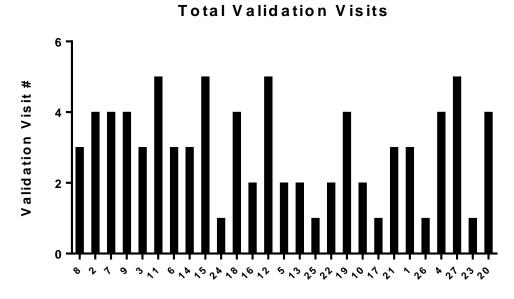

MTQIP 2015 Hospital Metrics

- Participation 60%
 - Data Submission
 - Surgeon Lead
 - Trauma Program Manager/Registrar
 - Presentation/Use of MTQIP data
- Performance 40%
 - Data Validation
 - Site-specific QI project
 - Massive Transfusion Protocol
 - VTE Prophylaxis

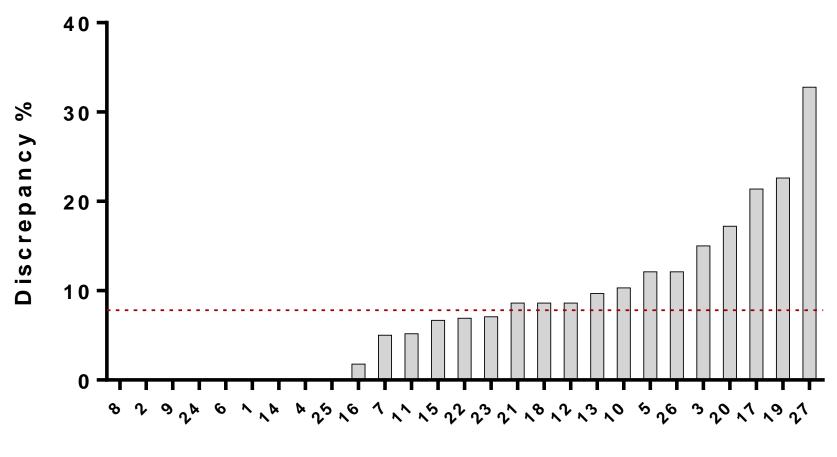
Performance


#5	10	Data Accuracy	First Validation Visit Error Rate	Two or > Validation Visits Error Rate			
		5 Star Validation	0-4.5%	0-4.5%	10		
		4 Star Validation	4.6-5.5%	4.6-5.5%	8		
		3 Star Validation	5.6-8.0%	5.6-7.0%	5		
		2 Star Validation	8.1-9.0%	7.1-8.0%	3		
		1 Star Validation	>9.0%	>8.0%	0		
#6	10	Site Specific Quality Initiative Using MTQIP Data (Feb 2015-Feb 2016)				(40%)	
		Developed and impleme	ented with evidence of impr	with evidence of improvement		40	
		Developed and impleme	ented with no evidence of ir	nprovement	5	Ш	
		Not developed or implemented			0	PERFORMANCE	
#7	10	10 Mean Ratio of Packed Red Blood Cells (PRBC) To Fresh Frozen Plasma (FFP) In Patients Transfused <a>5 Units RBC In First 4 Hrs (18 Months Data)					
		Tier 1: <u><</u> 1.5		5.0	10	ō	
		Tier 2: 1.6-2.0			10	RF	
		Tier 3: 2.1-2.5			5	Б	
		Tier 4: >2.5			0		
#8	10	Admitted Patients (Trai	uma Service-Cohort 2) With	Initiation Of Venous			
		Thromboembolism (VTI					
		>50%			10		
		<u>></u> 40%			5		
		<40%			0		
				Total (Max Points) =	100		

Validation



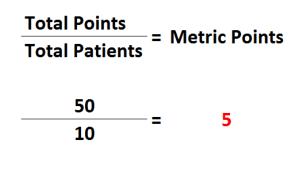
Trauma Center


Validation

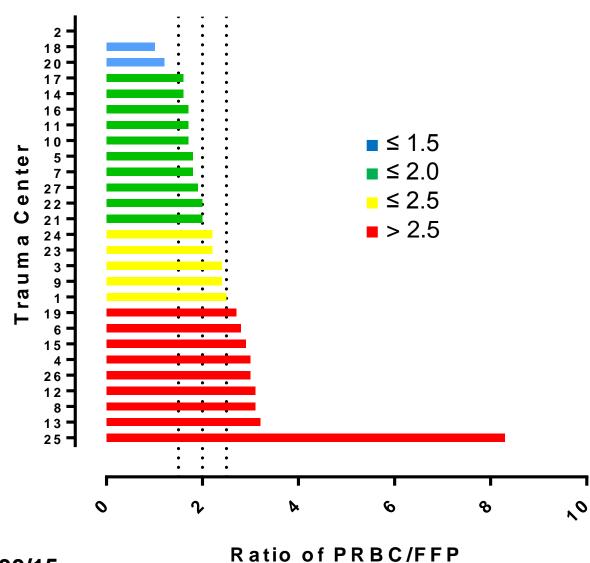
Pg. 38

Blood/IV Fluid Data

Trauma Center


Massive Transfusion Ratio

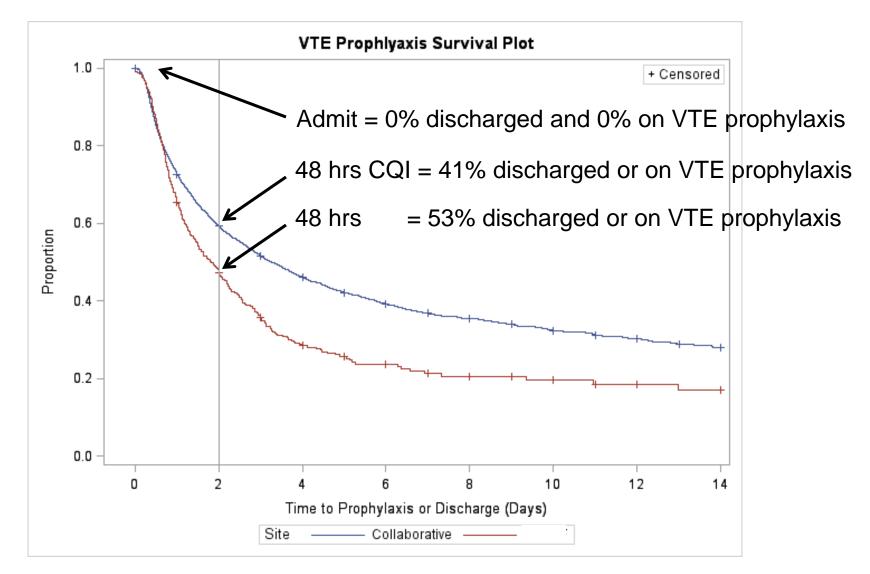
- Massive Transfusion
 - \geq 5 units PRBC's in first 4 hrs
 - Average of tier points score for each patient
 - 0 units FFP places patient in tier 4
 - 1/1/14 9/30/15


Ratio PRBC/FFP	Tier	Points
< 1.5	1	10
1.6 – 2.0	2	10
2.1 – 2.5	3	5
> 2.5	4	0

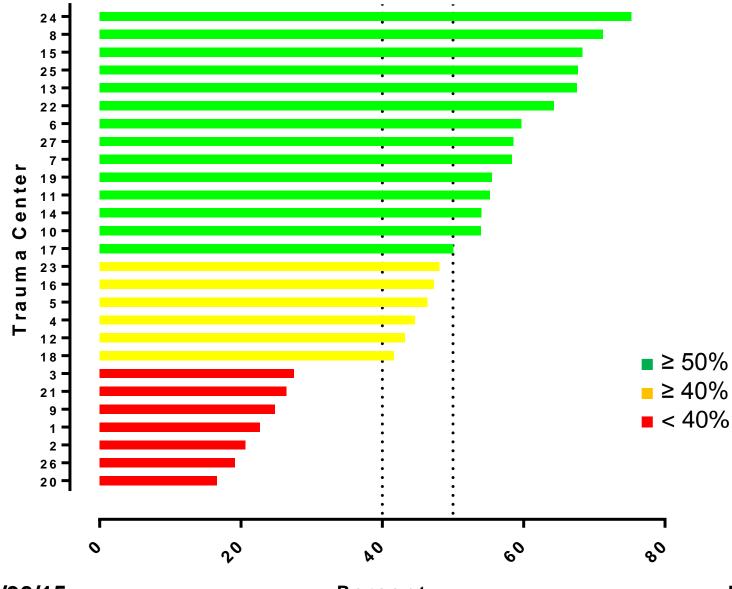
Massive Transfusion Metric Calculation Example

Patient	PRBC	FFP	PRBC/FFP	Tier	Points
1	10	10	1.0	1	10
2	5	4	1.3	1	10
3	7	4	1.8	2	10
4	8	5	1.6	2	10
5	5	2	2.5	3	5
6	7	3	2.3	3	5
7	9	2	4.5	4	0
8	5	1	5.0	4	0
9	11	0		4	0
10	6	0		4	0
					50

Blood Product Ratio in first 4 hrs if **>** 5 uPRBCs

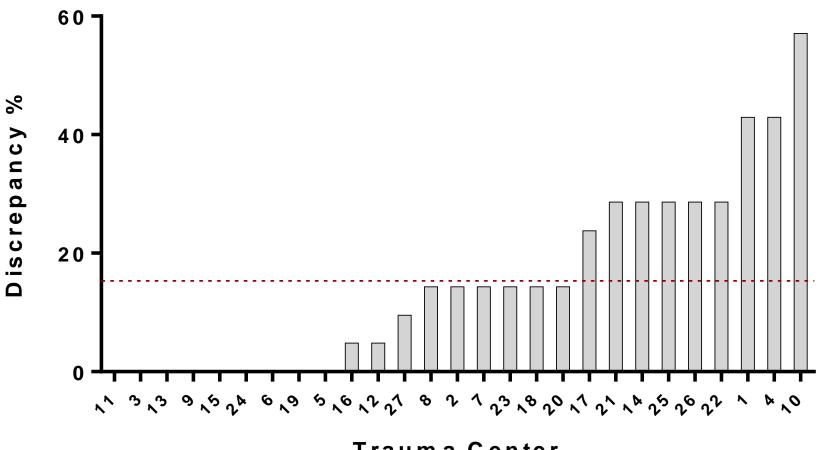

1/1/14 - 9/30/15

Pg. 33


VTE Prophylaxis

- Admit Trauma Service
 - In hospital with no VTE pro = non-Event
 - Discharge Home in 48 hrs = Event
 - VTE Prophylaxis in 48 hrs = Event
 - 1/1/14 6/30/15
- Rate
 - ≥ 50% (10 points)
 - ≥ 40% (5 points)
 - 0 39% (0 points)

VTE Prophylaxis Kaplan-Meier


Rate of VTE Prophylaxis by 48 hrs

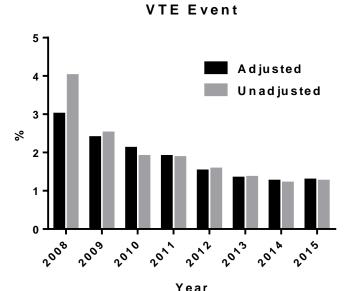
1/1/14-6/30/15

Percent

VTE Process Measures Data

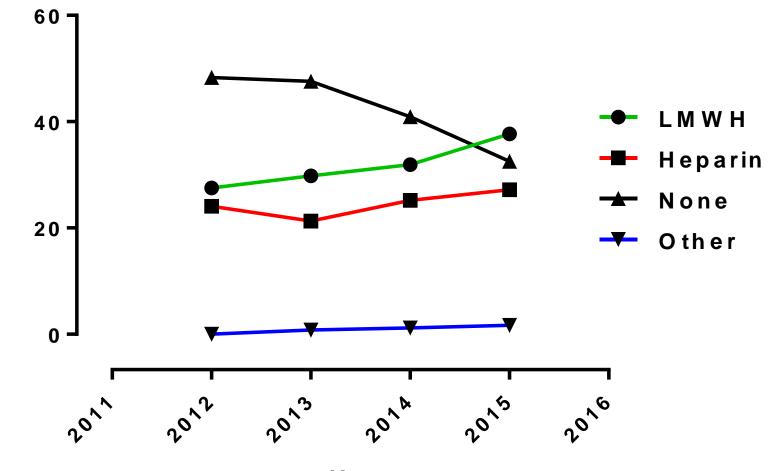
Trauma Center

Collaborative-Wide PI Projects



MTQIP 2015 Collaborative-Wide PI Projects

- Hemorrhage (≥ 5 u PRBC's first 4 hrs)
 - 1/1/14 to 9/30/15
 - % of patients with 4hr PRBC/FFP ratio ≤ 2.5
 - Begin = 34 %
 - Previous = 62 %
 - Current = 64 % (197/306)
 - Target = 80 %


MTQIP 2015 Collaborative-Wide PI Projects

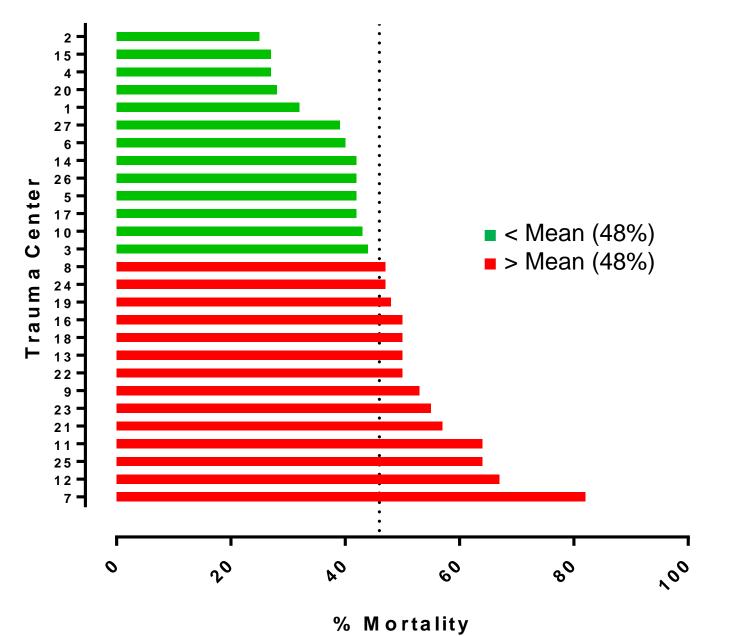
- VTE
 - VTE Rate
 - Begin = 2.5 %
 - Previous = 1.3 %
 - Current = 1.3 %
 - Target = 1.5 %
 - 48 hr VTE Prophylaxis Rate
 - Begin = 38 %
 - Previous = 46 %
 - Current = 48 %
 - Target = 50 %

Type VTE Prophylaxis

%

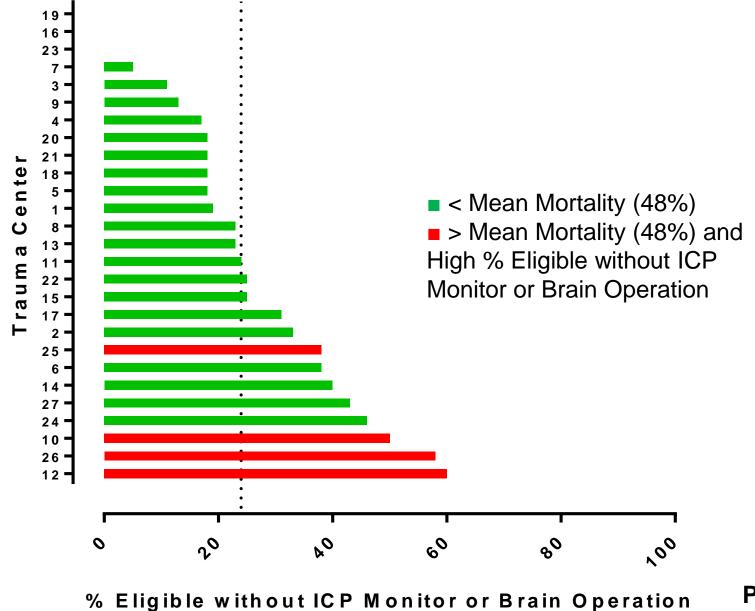
Year

MTQIP 2015 Collaborative Metrics

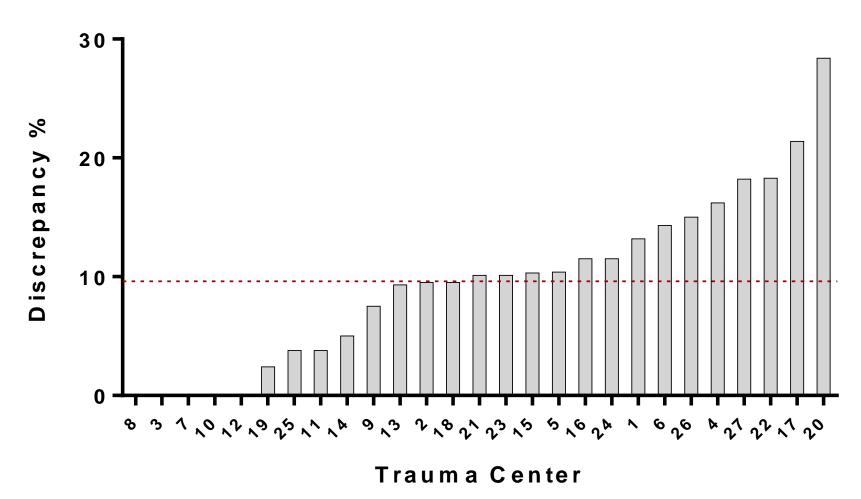

- Brain Injury
 - Selection Criteria
 - AIS Head > 0, excluding vascular, scalp, and bony injuries
 - Exclude if penetrating mechanism
 - Exclude if no signs of life
 - Exclude if direct admission transfer
 - Exclude if TBI GCS>8

MTQIP 2015 Collaborative Metrics

Brain Injury


- % of eligible patients with TBI intervention (Monitor or Operation)
 - Begin = 57 %
 - Previous = 74 %
 - Current = 76 %
 - Target = 70 %

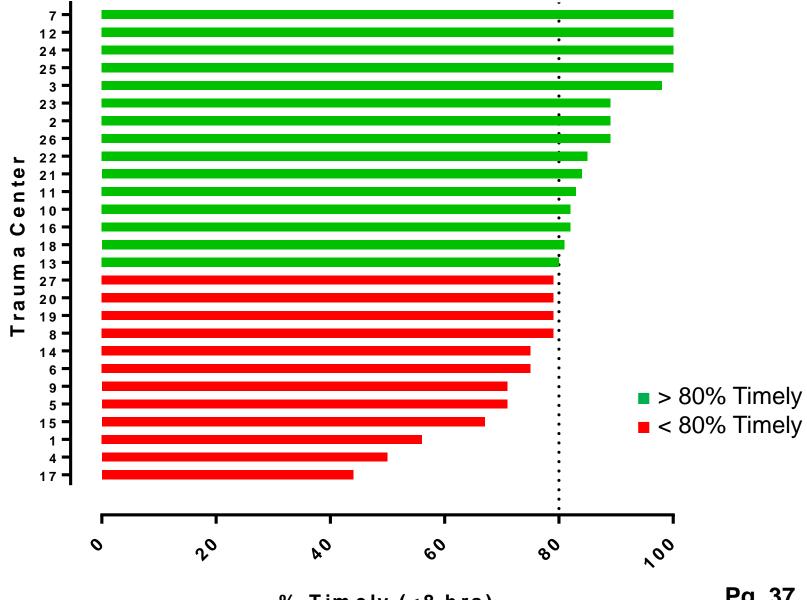
TBI Mortality (Raw)



Pg. 36

TBI Intervention

TBI Process Measures Data



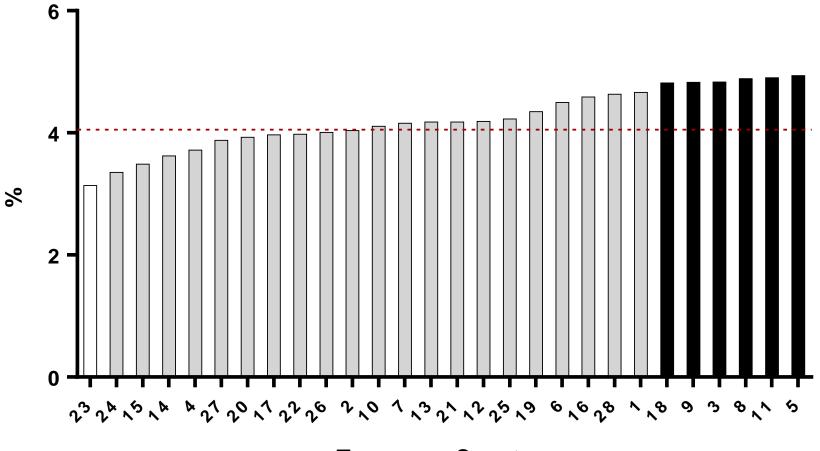
MTQIP 2015 Collaborative-Wide PI Projects

Brain Injury

- % of TBI intervention patients with timely intervention (≤ 8 hrs after arrival)
 - Begin = 65 %
 - Previous = 81 %
 - Current = 78 %
 - Target = 80 %

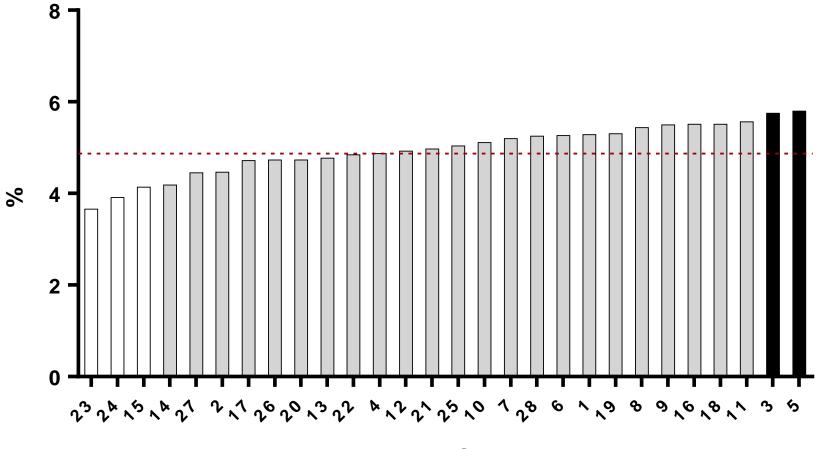
TBI Intervention Timing

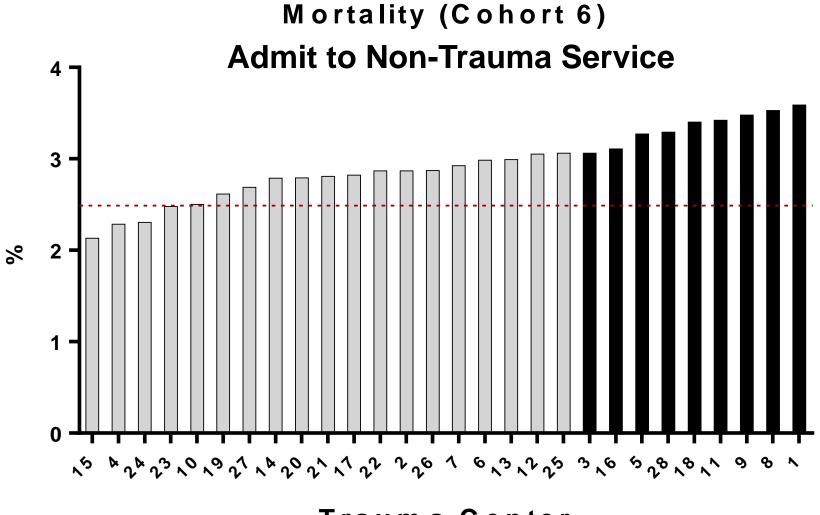
% Timely (<8 hrs)


Pg. 37

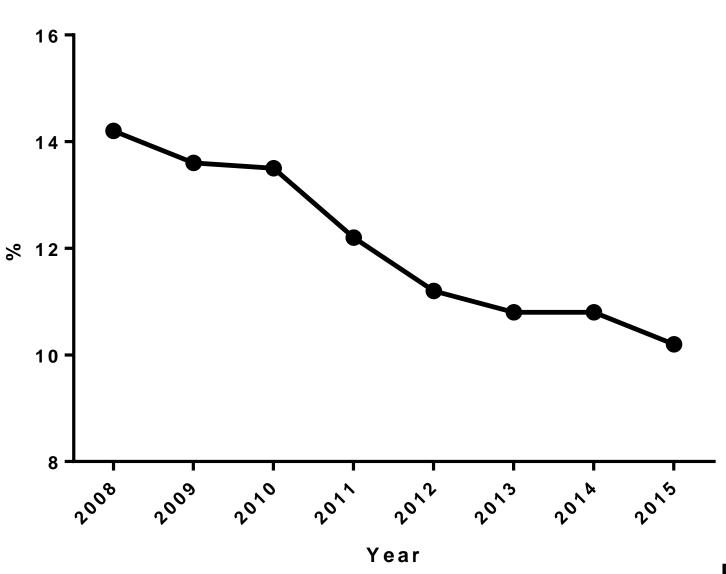
MTQIP Outcomes

ArborMetrix Report

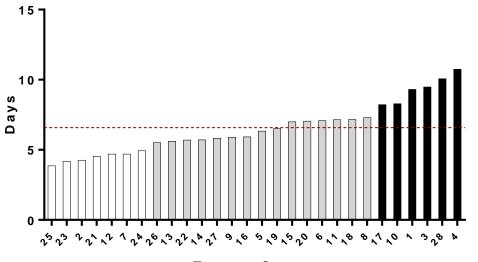

- 3/1/2014 to 9/30/2015 (Standard)
- Rates
 - Risk and Reliability-adjusted
 - Red dash line is collaborative mean
- Legend
 - Low-outlier status (better performance)
 - Non-outlier status (average performance)
 - High-outlier status (worse performance)



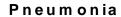
Trauma Center

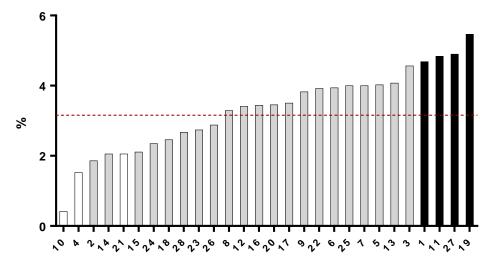


Trauma Center

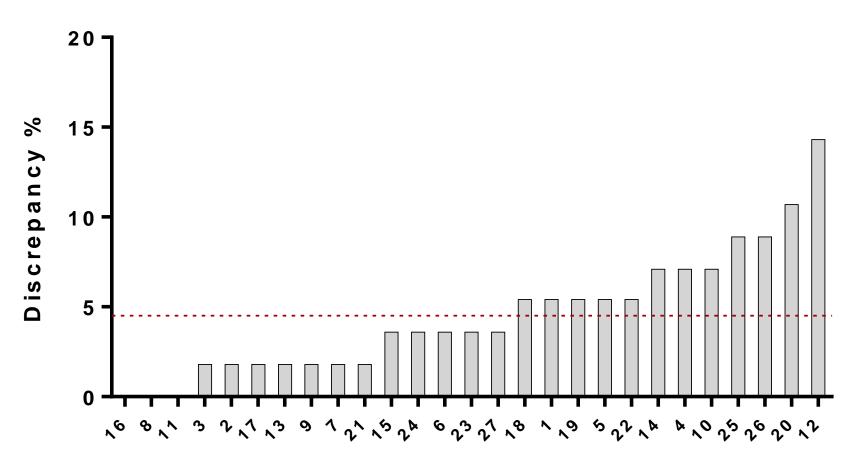

Trauma Center

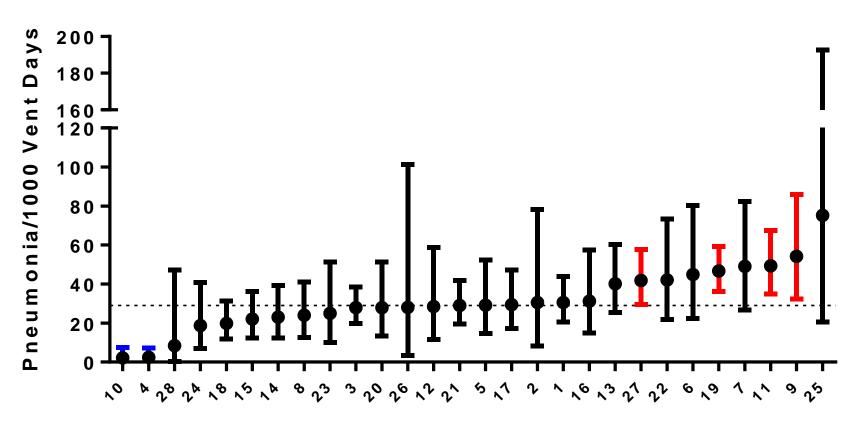
Consortium Outcomes Overview Serious Cx


Pg. 18


Adjusted Ventilator Days

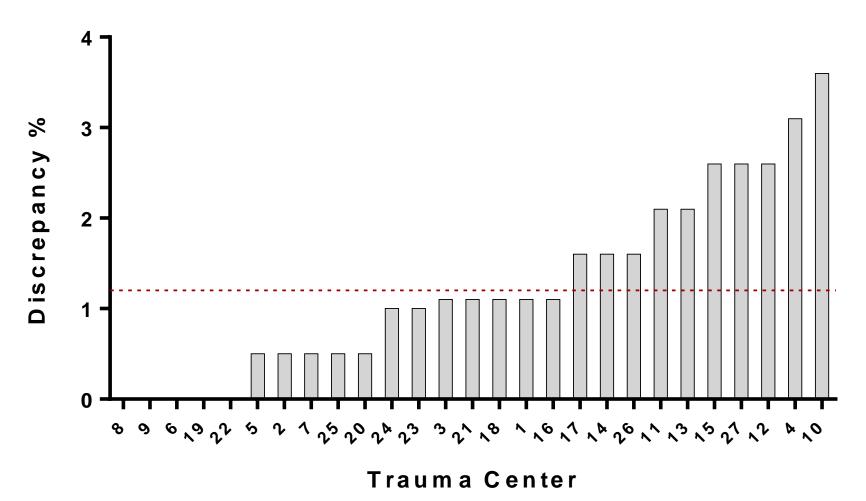
Trauma Center

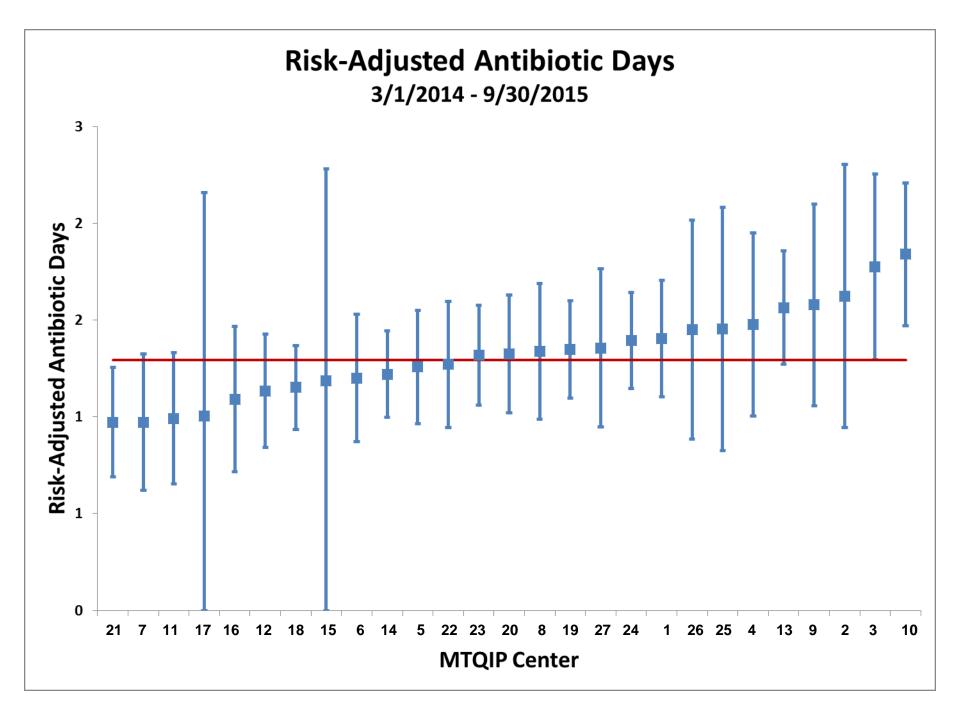

Pg. 29


Trauma Center

Discharge Data

Trauma Center

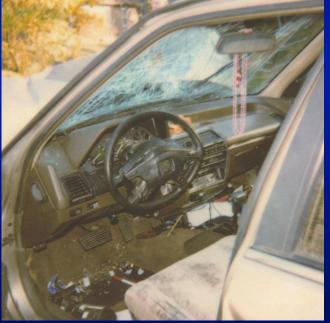




Trauma Center

Pg. 30

Outcomes Data



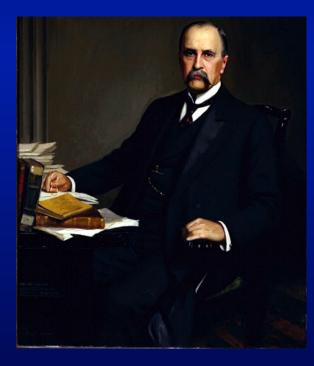
Treatment of Blunt Traumatic Aortic Injury

Himanshu Patel, MD University of Michigan

Advances in Treatment of Traumatic Aortic Transection

Himanshu J. Patel MD

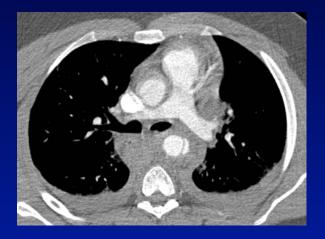
University of Michigan Medical Center



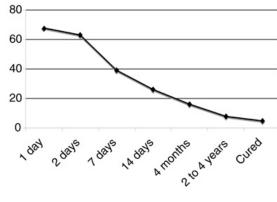
Author Disclosures

• Consulting fees from WL Gore Inc.

"There is no disease more conducive to clinical humility than aneurysm of the aorta"

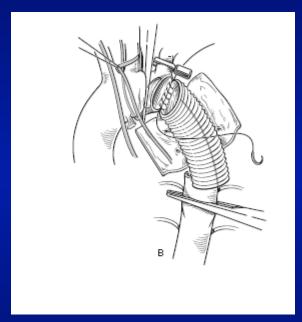


Sir William Osler


Natural History

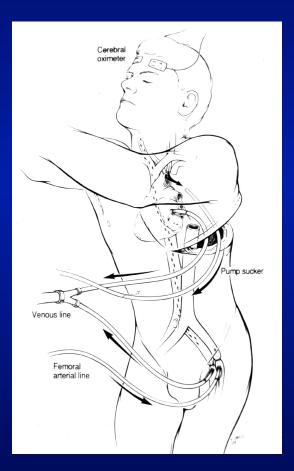
- Pioneering work described natural history of untreated blunt thoracic aortic injury
 - Initial mortality rate at 24 hours was 34%
- Classic teaching of early aortic repair

Survival Times of Hospitalized Patients



Parmley, et al. 1958

Prospective AAST-1 Study (1997)


- Immediate repair in 207 of 274 patients
- 31% mortality rate with 63% of deaths attributable to aortic rupture
- Paraplegia rate of 9%

Contemporary Natural History

- Akins et. al. (1981)
 challenged dogma of
 immediate repair
- Recent autopsy study (242 patients) suggests
 - 57% dead at scene
 - 37% died in 1st 4 hours
 - 6% died thereafter

Emerging Paradigm Shifts

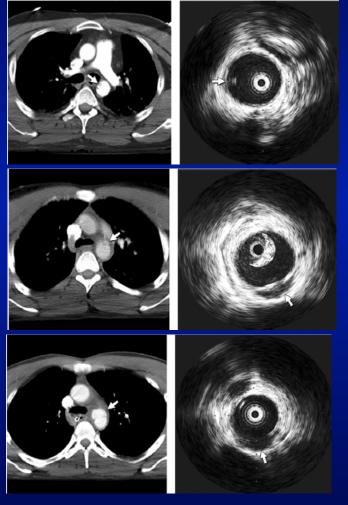
- Prospective study:
 - CT for early diagnosis
 - Prompt BP control eliminates rupture risk
 - Treat other life threatening injuries—e.g. closed head injury
 - Validated the concept of selective delayed repair

Prospective Study of Blunt Aortic Injury Helical CT is Diagnostic and Antihypertensive Therapy Reduces Rupture

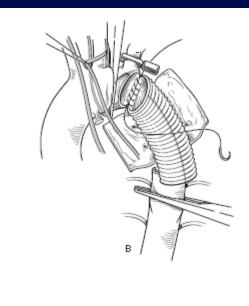
Timothy C. Fabian, MD,* Kimberly A. Davis, MD,* Morris L. Gavant, MD,† Martin A. Croce, MD,* Sherry M. Melton, MD,* Joe H. Patton, Jr., MD,* Constance K. Haan, MD,* Darryl S. Weiman, MD,* and James W. Pate, MD*

From the Departments of Surgery* and Radiology, † University of Tennessee, Memphis, Tennessee

Are All Injuries Lethal?


- Sensitivity of CT scans
- Classification schema of Azzizadeh et. al.

Extent of Injury Determines Therapy


- Grade 1—Intimal injury usually heals
- Grade 2—Intramural hematoma usually heals
- Grade 3—
 Pseudoaneurysm needs repair

Therapeutic Options

- Open descending aortic repair
 - Thoracotomy
 - Single lung ventilation
 - Extracorporeal support with heparin use
- Thoracic endovascular repair

Prospective AAST-2 Study (2007)

- Increased utilization of selective delayed management in 198 patients
 - Improved survival
 - No impact of associated injury

The Journal of TRAUMA® Injury, Infection, and Critical Care

Operative Repair or Endovascular Stent Graft in Blunt Traumatic Thoracic Aortic Injuries: Results of an American Association for the Surgery of Trauma Multicenter Study

Demetriaos Demetriades, MD, PhD, FACS, George C. Velmahos, MD, Thomas M. Scalea, MD, Gregory J. Jurkovich, MD, Riyad Karmy-Jones, MD, Pedro G. Teixeira, MD, Mark R. Hemmila, MD, James V. O'Connor, MD, Mark O. McKenney, MD, Forrest O. Moore, MD, Jason London, MD, Michael J. Singh, MD, Edward Lineen, MD, Konstantinos Spaniolas, MD, Marius Keel, MD, Michael Sugrue, MD, Wendy L. Wahl, MD, Jonathan Hill, MD, Mathew J. Wall, MD, Ernest E. Moore, MD, Daniel Margulies, MD, Valerie Malka, MD, and Linda S. Chan, PhD

Prospective AAST Trial-2 (2007)

- Increased utilization of TEVAR in patients
 - Improved early survival
 - No difference in LOS, ICU stay, ventilator days or systemic complications
 - Reduction in transfusion requirements

The Journal of TRAUMA® Injury, Infection, and Critical Care

Operative Repair or Endovascular Stent Graft in Blunt Traumatic Thoracic Aortic Injuries: Results of an American Association for the Surgery of Trauma Multicenter Study

Demetriaos Demetriades, MD, PhD, FACS, George C. Velmahos, MD, Thomas M. Scalea, MD, Gregory J. Jurkovich, MD, Riyad Karmy-Jones, MD, Pedro G. Teixeira, MD, Mark R. Hemmila, MD, James V. O'Connor, MD, Mark O. McKenney, MD, Forrest O. Moore, MD, Jason London, MD, Michael J. Singh, MD, Edward Lineen, MD, Konstantinos Spaniolas, MD, Marius Keel, MD, Michael Sugrue, MD, Wendy L. Wahl, MD, Jonathan Hill, MD, Mathew J. Wall, MD, Ernest E. Moore, MD, Daniel Margulies, MD, Valerie Malka, MD, and Linda S. Chan, PhD

	<u>Type of Repair</u>	<u>N</u>	<u>%</u>
	Open	68	35
	Clamp and Sew	11	6
	Bypass	57	30
<	Endovascular	125	65
	Total	193	

Prospective AAST Trial-2 (2007)

- Device related complications seen in 20% (n=25):
 - 9 of 25 required 2nd TEVAR procedure
 - 6 of 25 required open repair
 - Endograft collapse, branch vessel coverage, access vessel rupture

The Journal of TRAUMA® Injury, Infection, and Critical Care

Operative Repair or Endovascular Stent Graft in Blunt Traumatic Thoracic Aortic Injuries: Results of an American Association for the Surgery of Trauma Multicenter Study

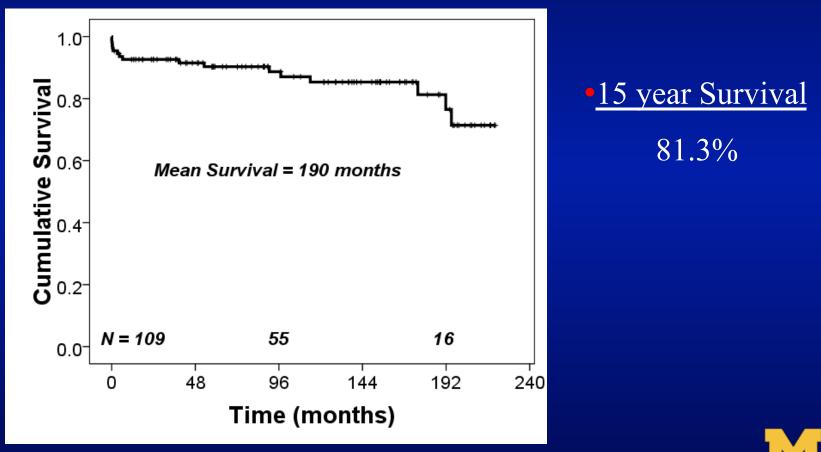
Demetrios Demetriades, MD, PhD, FACS, George C. Velmahos, MD, Thomas M. Scalea, MD, Gregory J. Jurkovich, MD, Riyad Karmy-Jones, MD, Pedro G. Teixeira, MD, Mark R. Hemmila, MD, James V. O'Connor, MD, Mark O. McKenney, MD, Forrest O. Moore, MD, Jason London, MD, Michael J. Singh, MD, Edward Lineen, MD, Konstantinos Spaniolas, MD, Marius Keel, MD, Michael Sugrue, MD, Wendy L. Wahl, MD, Jonathan Hill, MD, Mathew J. Wall, MD, Ernest E. Moore, MD, Daniel Margulies, MD, Valerie Malka, MD, and Linda S. Chan, PhD

Late Results of Repair of BTAI

- 109 patients treated from 1992-2010
- Selective delayed management in 72% treated since 1997
- TEVAR in 42% treated since 2002
 - Anatomical features considered high risk for rupture AND not open surgery candidate
 - Complete disruption
 - Lateral pseudoaneurysm
 - Age over 60 years

Early Outcomes

- Early mortality (either in-hospital or 30-day)
 - 5 patients (4.6%) all who had open repair
- Stroke 2.8%
- Spinal cord ischemia 1.8%
- Permanent dialysis 1.8%

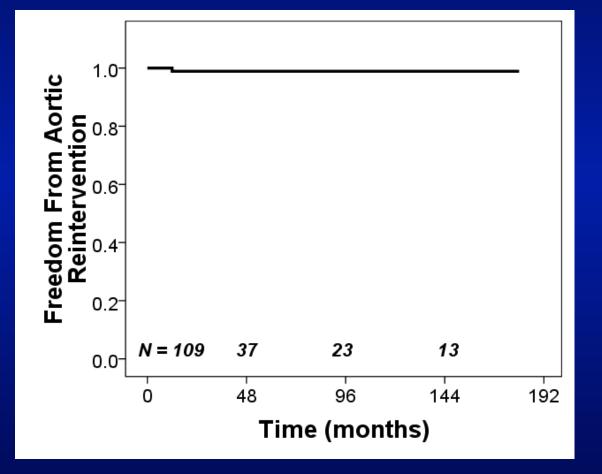

Early Morbidity

• Composite outcome of early mortality, stroke, paraplegia or dialysis dependent renal failure

 <u>Independent Predictors</u> 	<u>OR</u>	<u><i>p</i> Value</u>			
Age > 60 years	8.4	0.015			
Creatinine	7.9	0.017			
Postoperative sepsis	9.6	0.021			
• Repair type not predictive $(p = 0.4)$					

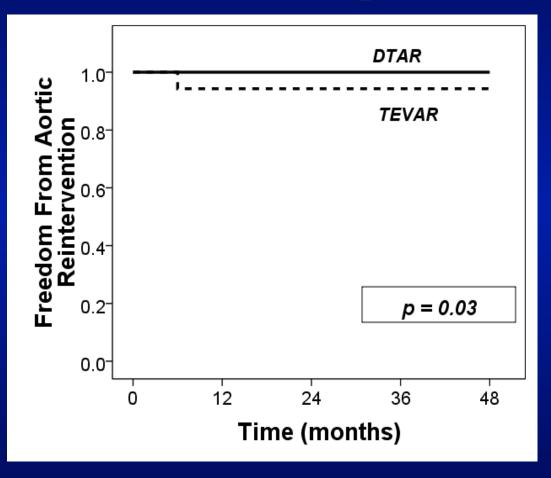
Survival Analysis---Entire Cohort

Iniversity of Michigan Health System


Late Mortality

Independent Predictors	HR	<u><i>p</i> Value</u>
Age > 60 years	4.1	0.01
Creatinine	9.1	< 0.001
Postoperative SCI	20.6	< 0.001

• Repair type not predictive (p = 0.7)


Late Aortic Reoperation—Entire Cohort

•<u>15 Year Freedom</u> 99.1%

Late Aortic Reoperation

<u>4 Year Freedom</u> *DTAR*: 100% *TEVAR*: 94% *p*=0.03

Early Pitfalls in TEVAR for BTAI

Beware the gothic arch and bird-beak in the young trauma patient

Vs.

•21 yr old

Early Pitfalls in TEVAR for BTAI

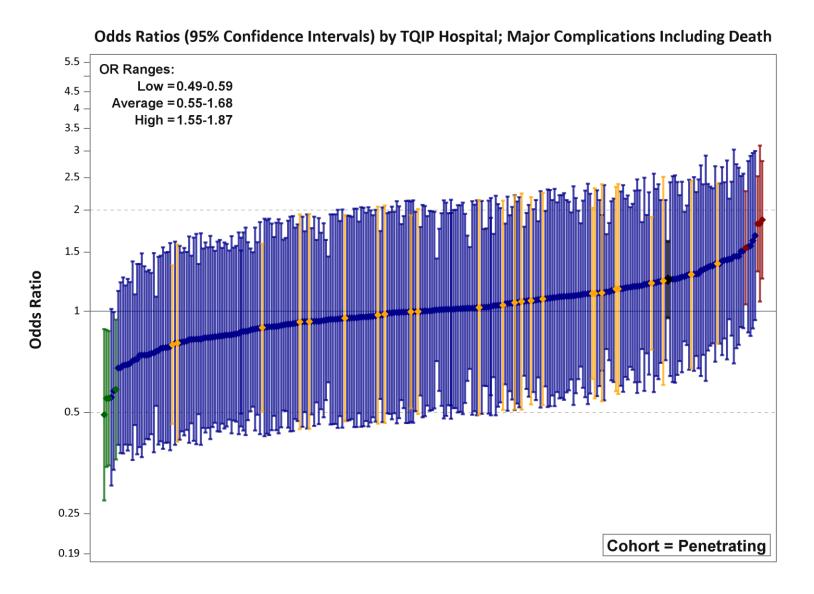
- Volume resuscitation increases aortic diameter by at least 10%
 - Oversizing of endografts may predispose to endograft collapse
- Remember circle of Willis
 - Pre-TEVAR left carotid to left subclavian arterial bypass should be considered

Late Pitfalls in TEVAR for BTAI

- Aortic diameter grows by up to 1 cm from 20-80 years of age
- Many young patients will not return for follow-up imaging required for TEVAR
 - Imaging follow-up in our study was 50 months vs. 104 months obtained for primary endpoint of vital status from SSDI

Summary

- 1. Repair for BTAI can be performed with excellent early and late results—gold standard remains open repair.
- 2. With careful selection of candidates for TEVAR, factors other than treatment strategy may impact late survival.
- 3. Risk for re-intervention remains higher in the TEVAR subset thus providing strong motivation to develop devices tailored to this pathology.



ACS-TQIP and MTQIP Reports

Mark Hemmila, MD University of Michigan

Confused

ACS TQIP BENCHMARK REPORT:

American College of Surgeons

Inspiring Quality: Highest Standards, Better Outcomes

Inclusion and Exclusion Criteria

- ACS-TQIP
 - ICD-9 in Trauma Range
 - AIS $05 \rightarrow AIS 98$
 - AIS 90 or 95 \rightarrow AIS 98
 - ICD-9 \rightarrow AIS 98
 - AIS ≥ 3 one body region
 - Age ≥ 16
 - Trauma type blunt or penetrating

MTQIP

- ICD-9 in Trauma Range
- AIS 2005
- ISS ≥ 5
- Age ≥ 16
- Trauma type blunt or penetrating

Inclusion and Exclusion Criteria

- ACS-TQIP
 - Exclude ED disp home, other, LAMA, transfer
 - Exclude pre-existing advance directive

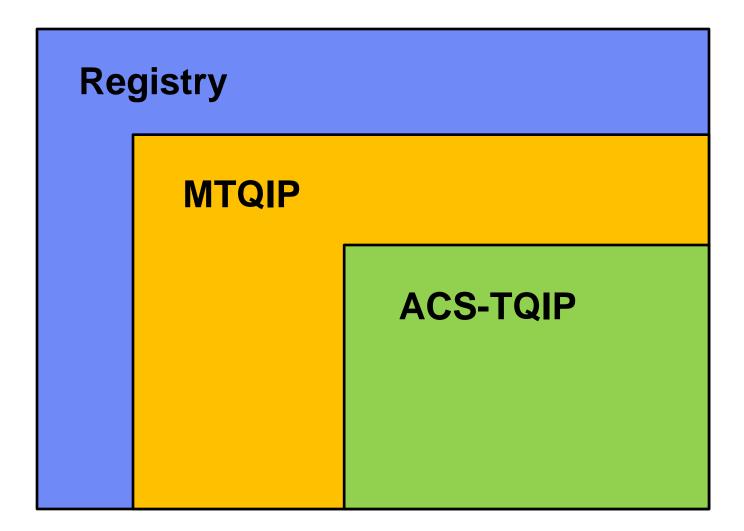
- MTQIP
 - Exclude if LOS < 24 hrs and alive

- Exclude patients with the following combinations of ED vitals:
 - SBP=0, and Pulse=0, and GCS Motor=1
 - SBP=NK/NR, and Pulse=0, and GCS Motor=1
 - SBP=0, and Pulse=0, and GCS Motor=NK/NR
 - SBP=0, and Pulse=NK/NR, and GCS Motor=1
 - SBP=NK/NR, and Pulse=0, and GCS Motor=NK/NR

Inclusion and Exclusion Criteria

ACS-TQIP

MTQIP


- Exclude isolated hip fracture
- Separate analysis

Pre-existing Advance Directive

MTQIP

- 102,751 Patients
- 2,870 (2.8%) with pre-existing advance directive
- Range 0.2% to 11.2%
- 17% Died
- 83% Discharged alive

Data

Analysis, n's, and Reliability Adjustment

Table 2: Risk-Adjusted Mortality by Cohort

	Mortality	Odds Ratio and 95% Confidence Interval	
Cohort			
All			
Blunt Multisystem			
Penetrating			
Shock			
тві			
Intubated TBI			
Severe TBI			
Elderly			
Elderly Blunt Multisystem			
IHF			

Reports

 Mortality
 Cohort = All Patients

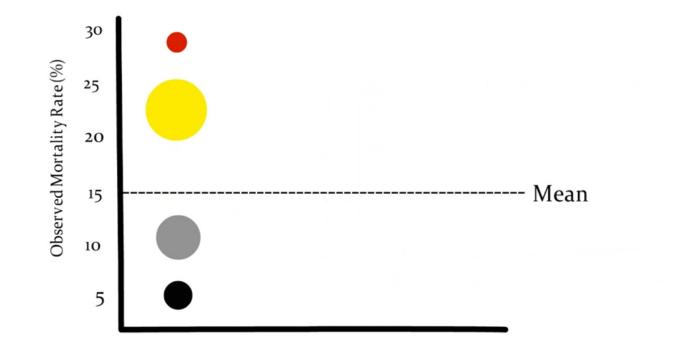
TQIP#	/N	Deaths	OR	Lower	Upper
248	318	13	0.59	0.36	0.96
277	271	7	0.61	0.36	1.03
148	257	11	0.7	0.43	1.15
87	1020	64	0.72	0.51	1
123	395	14	0.81	0.51	1.28
108	479	31	0.82	0.52	1.28
66	421	13	0.82	0.51	1.33
214	243	13	0.85	0.53	1.39
120	260	11	0.88	0.51	1.52
162	280	16	0.88	0.53	1.45
100	550	24	0.9	0.61	1.33
152	449	21	0.9	0.59	1.37
151	520	24	0.9	0.59	1.37
30	263	24	0.93	0.58	1.5
149	615	38	0.97	0.68	1.38
31	255	10	1.05	0.61	1.79
209	179	15	1.05	0.61	1.8
91	269	19	1.09	0.66	1.79
119	401	18	1.14	0.7	1.85
86	595	50	1.26	0.88	1.79
29	519	40	1.27	0.86	1.86
79	530	42	1.33	0.91	1.95
134	372	26	1.33	0.87	2.02
99	203	16	1.34	0.79	2.27
122	809	74	1.54	1.15	2.0 6
138	312	28	1.57	1	2.44
105	423	36	1.78	1.17	2.72

Reports

- Mortality
- Cohort = Blunt
 Multisystem

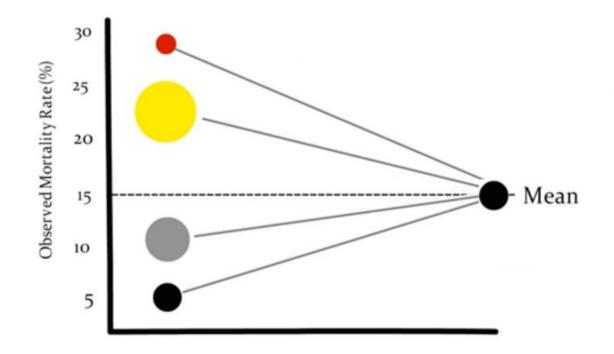
TQIP#	/ N	Deaths	OR	Lower	Upper
87	223	25	0.72	0.46	1.12
209	32	5	0.85	0.46	1.58
148	33	4	0.87	0.48	1.56
123	27	1	0.87	0.46	1.66
277	24	1	0.9	0.48	1.72
120	36	2	0.93	0.49	1.79
248	13	2	0.96	0.49	1.84
66	40	4	0.96	0.52	1.77
214	14	1	0.96	0.49	1.9
149	70	11	0.96	0.57	1.6
100	63	3	0.98	0.53	1.81
152	56	7	0.98	0.56	1.72
30	18	5	0.98	0.52	1.84
91	27	3	1	0.53	1.89
99	32	5	1.01	0.56	1.85
162	41	5	1.02	0.56	1.87
134	46	9	1.02	0.57	1.81
31	26	2	1.03	0.53	2
79	96	13	1.04	0.62	1.75
122	95	16	1.05	0.65	1.68
29	109	16	1.08	0.66	1.75
151	51	5	1.09	0.59	2
86	54	9	1.09	0.61	1.95
138	38	6	1.09	0.6	2.01
119	31	6	1.15	0.61	2.17
108	49	10	1.21	0.67	2.19
105	82	14	1.28	0.74	2.21

Reports

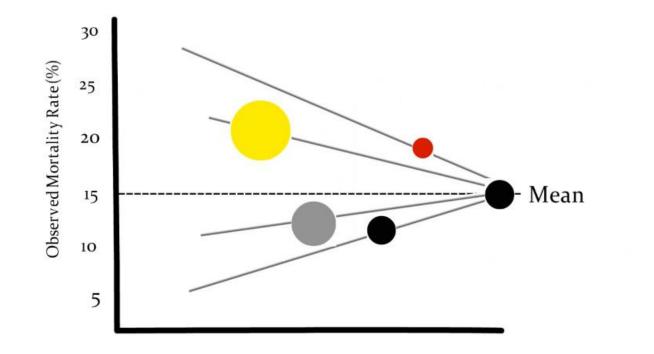

Mortality
Cohort = Shock

TQIP#	N	Deaths	1	OR	Lower	Upper
87	33	7	Τ	0.92	0.62	1.37
119	32	2	V	0.92	0.61	1.39
151	18	1	X	0.94	0.62	1.42
30	10	1	Ν	0.97	0.64	1.47
134	17	3		0.97	0.64	1.45
248	2	1		0.99	0.66	1.5
120	12	2		0.99	0.66	1.49
31	4	1		0.99	0.65	1.49
138	6	0		0.99	0.65	1.5
214	7	2		1	0.66	1.51
91	5	1		1	0.66	1.51
86	22	3		1	0.67	1.5
99	2	1		1	0.66	1.52
277	2	1		1.01	0.67	1.53
123	25	4		1.01	0.68	1.5
66	11	2		1.01	0.67	1.51
100	13	3		1.01	0.68	1.51
152	13	3		1.01	0.67	1.52
105	14	1		1.01	0.67	1.52
162	6	2		1.02	0.67	1.54
108	30	11		1.03	0.69	1.53
29	30	9		1.03	0.69	1.52
79	12	6	V	1.03	0.57	1.87
148	5	3	V	1.04	0.69	1.57
209	12	4	X	1.04	0.69	1.57
149	14	7		1.07	0.71	1.61
122	27	9		1.09	0.73	1.64

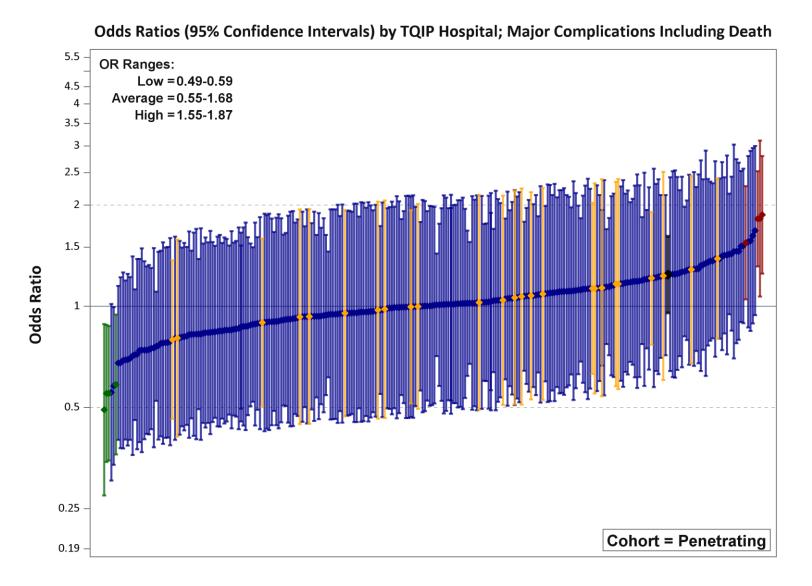
 $\land \land$


Why? – Reliability Adjustment

How does reliability adjustment transform outcomes conceptually?


Why? – Reliability Adjustment

How does reliability adjustment transform outcomes conceptually?



Why? – Reliability Adjustment

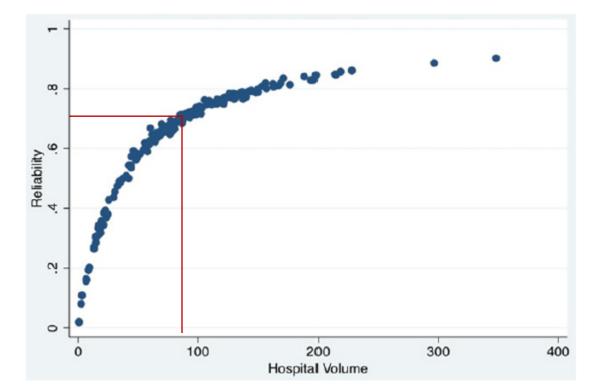
How does reliability adjustment transform outcomes conceptually?

No Longer Confused

Science

Original Investigation

Reliability of Risk-Adjusted Outcomes for Profiling Hospital Surgical Quality


Robert W. Krell, MD; Ahmed Hozain, BS; Lillian S. Kao, MD, MS; Justin B. Dimick, MD, MPH

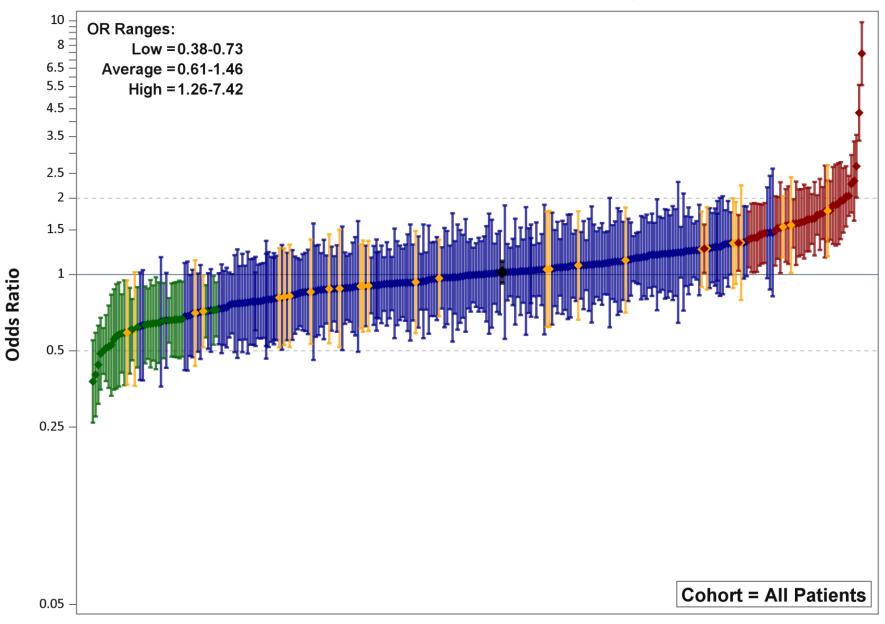
Reliability of Superficial Surgical Site Infections as a Hospital Quality Measure

Lillian S Kao, MD, MS, FACS, Amir A Ghaferi, MD, MS, Clifford Y Ko, MD, MS, MSHS, FACS, Justin B Dimick, MD, MPH, FACS

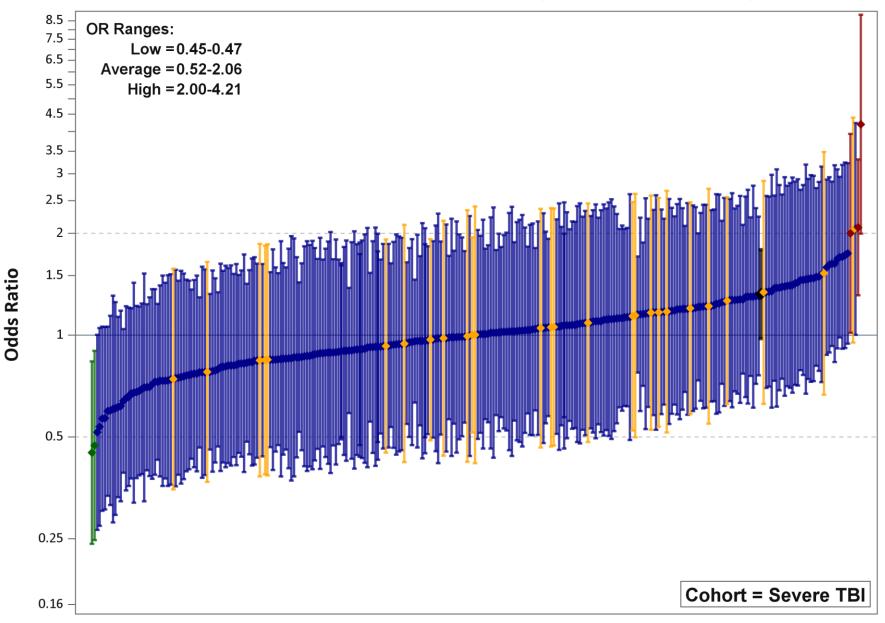
Reliability

- Like Power
- Function of
 - Signal to Noise
 - Size of cohort
 - Prevalence of outcome

Figure 2. Relationship between reliability and hospital caseload of colon resections based on the American College of Surgeons National Surgical Quality Improvement Program 2007 database.


What I now know

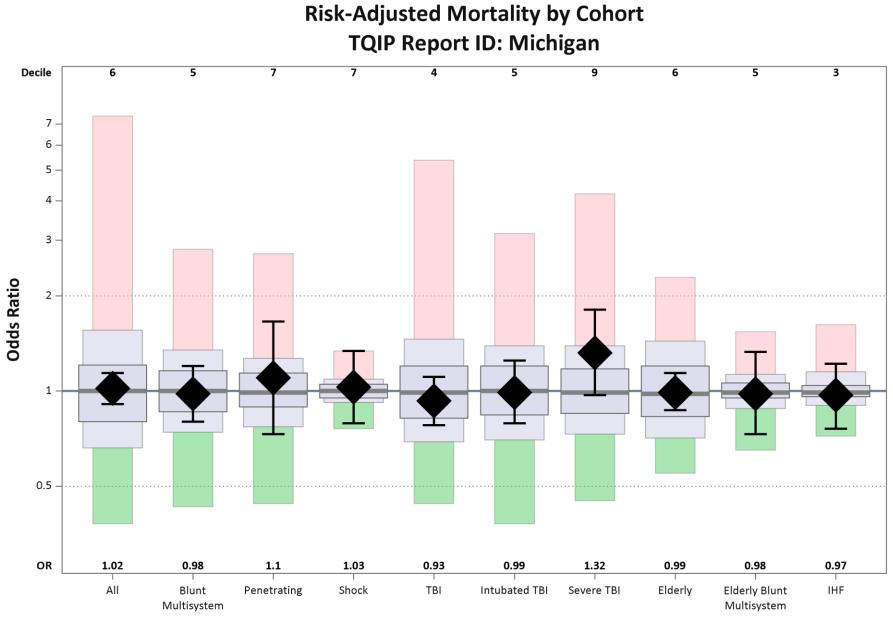
State Values


- Probably real
- Individual centers move to mean with small n's
- Michigan as a large group does not
- Data Validation
 - MTQIP Data Validation Program
 - ACS-TQIP ?
 - Complications ↑
 - BMC2 has similar problem

What I think may be true for trauma centers in Michigan

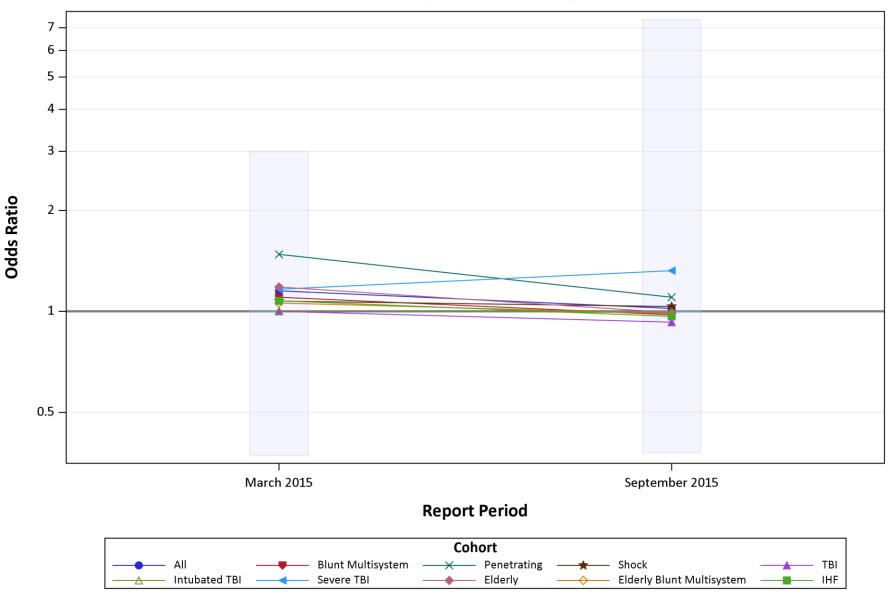
- Hospital ACS-TQIP values
 - Mortality: 10 reports, 2-3 sufficient power
 - Complications: 10 reports, 2-3 sufficient power
 - Mortality or Comp: 10 reports, 2-3 sufficient power
 - Complication in select group: 3 reports, 0 sufficient power
 - 33 reports, 9 (27%) with power to tell differences
 - Cohort = All Patients
 - Cohort = Blunt Multisystem
 - Cohort = Elderly

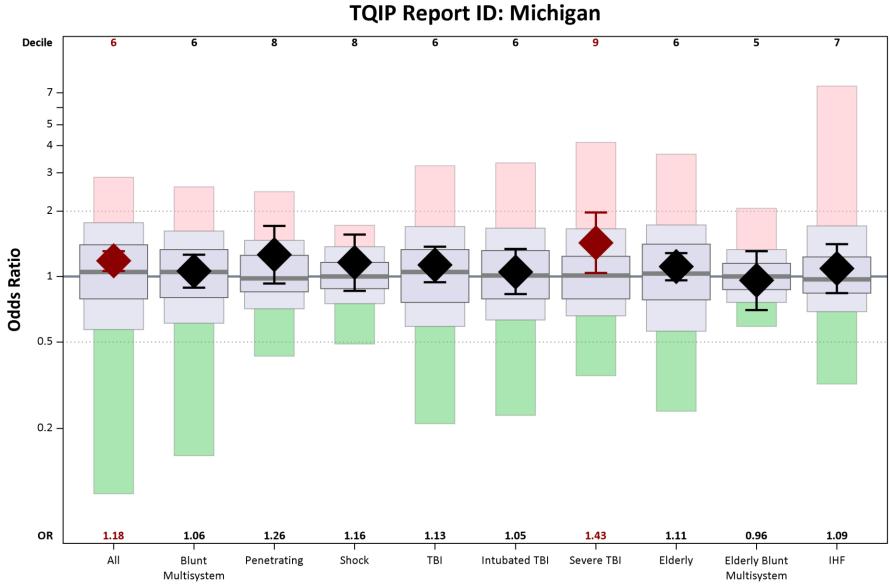
Odds Ratios (95% Confidence Intervals) by TQIP Hospital; Mortality



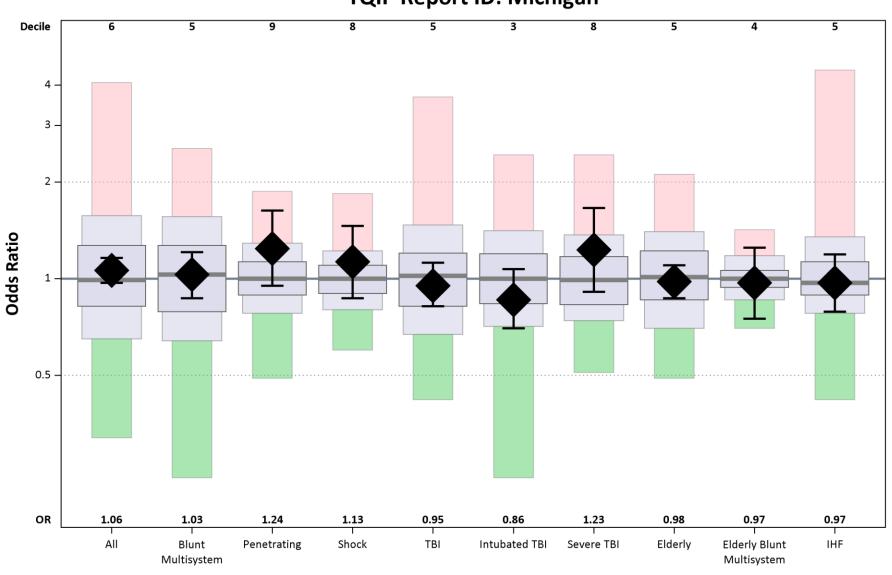
Odds Ratios (95% Confidence Intervals) by TQIP Hospital; Mortality

ACS-TQIP State Report

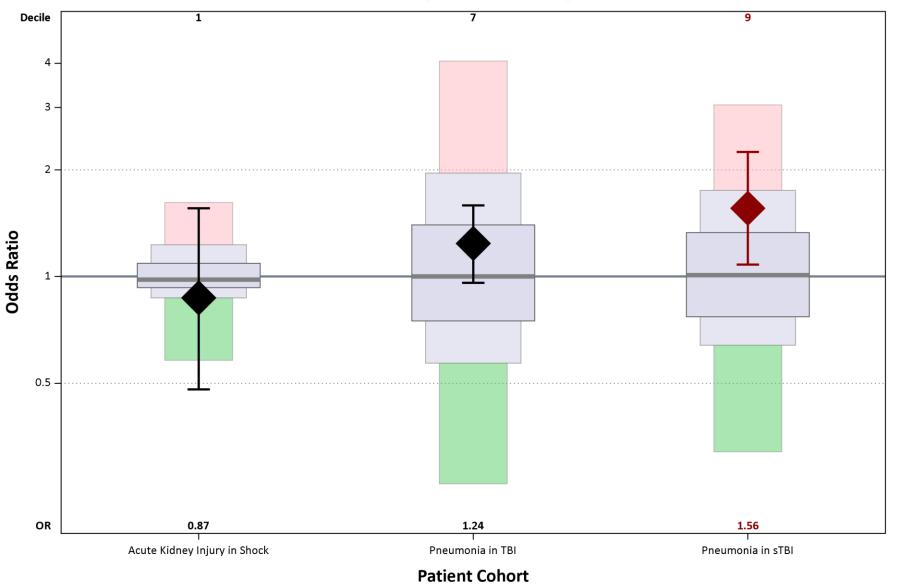

Mark Hemmila, MD University of Michigan



Patient Cohort


Risk-Adjusted Mortality by Reporting Period and Cohort TQIP Report ID: Michigan

Risk-Adjusted Major Complications by Cohort


Patient Cohort

Risk-Adjusted Major Complications Including Death by Cohort TQIP Report ID: Michigan

Patient Cohort

Risk-Adjusted Major Complications Including Death by Reporting Period and Cohortt TQIP Report ID: Michigan

Break

Back at 1:00 pm

MTQIP Data and VTE Outcomes

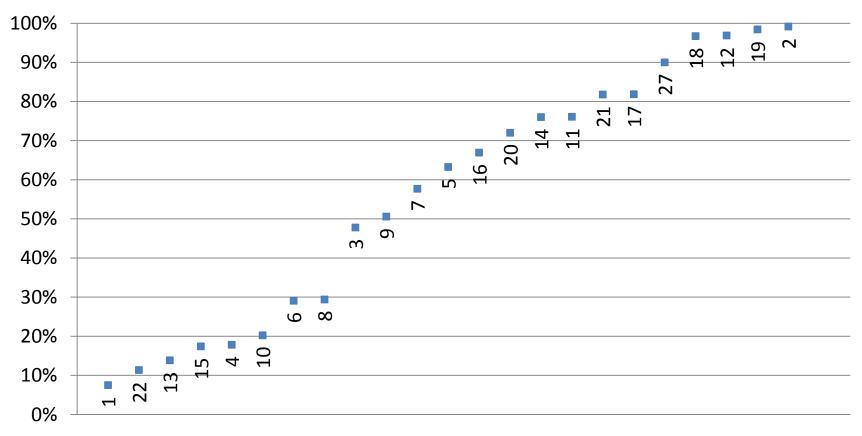
Anne Cain-Nielsen, MS University of Michigan

Outcomes for low molecular weight heparin vs heparin use in MTQIP

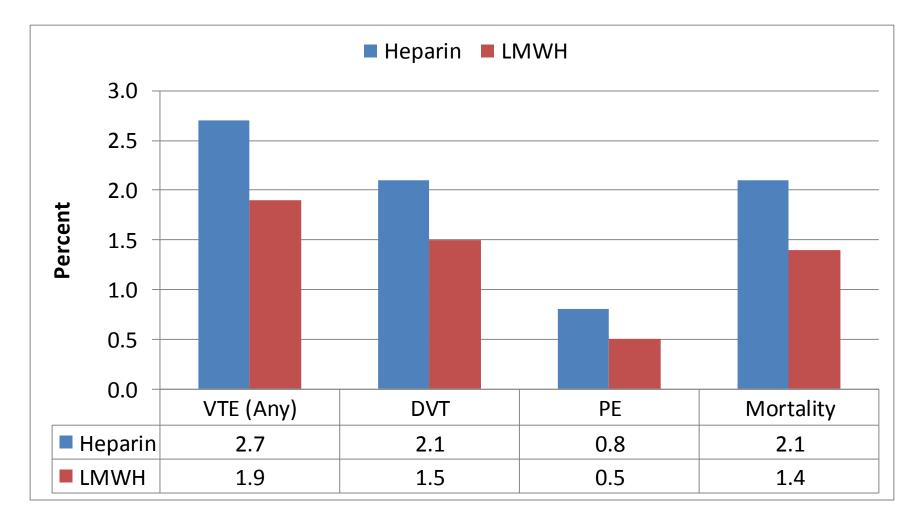
Our goals

- Compare outcomes for patients who received LMWH v heparin
 - Conflicting evidence
 - Geerts: LMWH better
 - Sise: Heparin non-inferior to LMWH
- Use regression models to figure out 'head-tohead' real world comparison
 - For similar patients who differ only by drug type, what do their VTE and mortality outcomes look like?
- We have the data to do this!

Who we studied


- Cohort 2 (Admit to trauma service, exclude DOAs and deaths within first 24h)
- Only patients who received LMWH or heparin during their hospital stay

Exclude other VTE prophylaxis, no VTE prophylaxis


- 18,010 patients from 2012-2014
 - 43% (7,786 patients) received heparin
 - 57% (10,224 patients) received LMWH

Hospital practices

Reported LMWH Use (%), 2012-2014

Unadjusted Outcomes

Without accounting for any patient factors, outcomes (any VTE, DVT, PE, mortality) are all better for patients who received LMWH v heparin.

Risk-adjustment

Unadjusted, LMWH looks better than Heparin. Why can't we just use these results?

- Patients who receive LMWH or heparin might be systematically different: sicker, older, etc.
- Patient differences could skew how we interpret the data
- \rightarrow Use regression models to risk adjust
 - Try to evaluate the effect of the drug as if we were treating the same patient.

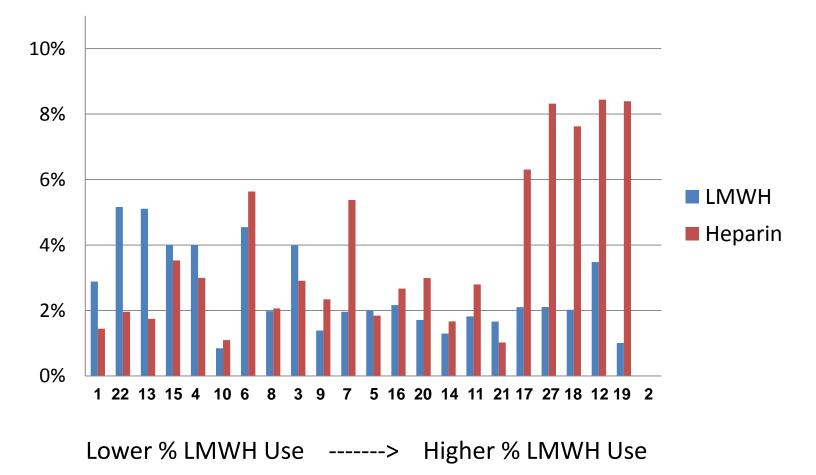
Patient Characteristic	Heparin	LMWH	p-value
Patients, N	7,786	10,224	
Age, Mean	51.8 ± 22.0	51.3 ± 21.6	0.09
Male Gender, %	65.6	65.1	0.5
Race, %			
White	58.8	76.6	< 0.001
Black	37.4	18.1	
Other	3.8	5.3	
Private Insurance, %	46.6	52.2	<0.001
Blunt Mechanism, %	85.7	90.9	< 0.001
ED Pulse, %			
51 - 120, bpm	90.8	91.5	0.002
> 120	7.3	6.5	
1 - 50	1.0	0.7	
Injury Severity Score, %			
5 - 15	74.8	73.4	< 0.001
16 - 24	15.7	17.7	
25 - 35	7.8	6.8	
> 35	1.7	2.1	
AIS Head/Neck > 2, %	20.8	16.3	<0.001
AIS Face > 2, %	0.6	0.6	0.9
AIS Chest > 2, %	25.8	29.0	<0.001
AIS Abdomen > 2,%	7.8	8.1	0.4
AIS Extremity > 2, %	19.0	23.7	<0.001

Patient Characteristic	Heparin	LMWH	p-value
Intubated, %	46.5	47.5	0.2
Transfer In, %	13.4	20.9	<0.001
Acquired Coagulopathy, %	4.9	6.7	<0.001
Congestive Heart Failure, %	2.3	2.8	0.02
Dialysis	1.2	0.4	<0.001
Drug Use	13.1	11.4	<0.001
Hypertension, %	33.0	29.7	< 0.001
Obesity, %	13.7	12.7	0.05
Hours to VTE Prophylaxis, Mean	$\textbf{35.4} \pm \textbf{54.9}$	43.7 ± 57.6	< 0.001
Hours to VTE Prophylaxis, Median	13.9	26.4	< 0.001
Timely VTE Prophylaxis, %	79.6	73.8	<0.001

Data analysis

- Logistic regression
- Outcome: VTE event
- Covariates (Risk Adjusters): Age/Sex/Race, ISS, AIS, Pulse, GCS-Motor, BP, Mechanism, Comorbidities

Variable	Odds Ratio (95% CI)	<i>p</i> -value
LMWH	0.7 (0.50-0.92)	0.01
Male	1.4 (1.06-1.75)	0.02
Age		
16 - 25, years	1.0	
26 - 45	1.5 (1.06-2.21)	0.03
46 - 65	2.3 (1.56-3.24)	< 0.001
66 - 75	3.3 (2.06-5.23)	<0.001
> 75	2.5 (1.48-4.19)	0.001
Race		
White	1.0	
Black	0.9 (0.62-1.34)	0.6
Other	0.8 (0.51-1.42)	0.5
Private Insurance	1.1 (0.85-1.39)	0.5
Injury Severity Score		
5 - 15	1.0	
16 - 24	2.0 (1.46-2.70)	<0.001
25 - 35	2.7 (1.82-4.06)	<0.001
> 35	5.3 (3.13-8.91)	<0.001
AIS Head/Neck > 2	1.1 (0.78-1.47)	0.7
AIS Face > 2	1.0 (0.44-2.09)	0.9
AIS Chest > 2	0.9 (0.70-1.17)	0.5
AIS Abdomen	1.2 (0.83-1.61)	0.4
AIS Extremity	1.6 (1.21-1.99)	<0.001


Variable	Odds Ratio (95% CI)	<i>p</i> -value
ED GCS Motor		
6	1.0	
5 - 2	1.4 (1.04-2.02)	0.03
1	1.4 (0.95-1.95)	0.1
Blunt Mechanism	0.6 (0.44-0.90)	0.01
Fall	1.0 (0.74-1.33)	0.9
ED Systolic Blood Pressure, mmHg		
> 90	1.0	
61 - 90	1.5 (1.00-2.17)	0.05
≤ 60	3.0 (1.41-6.49)	0.004
ED Heart Rate, bpm		
51 - 120	1.0	
> 120	1.9 (1.38-2.48)	<0.001
1 - 50	1.0 (0.37-2.49)	0.9
Intubated	3.1 (2.16-4.33)	<0.001
Timely VTE Prophylaxis	0.4 (0.34-0.57)	<0.001
Smoking	0.8 (0.58-0.98)	0.03
Obesity	1.2 (0.94-1.64)	0.1
Acquired Coagulopathy	1.4 (0.52-3.58)	0.5
Hypertension	0.88 (0.67-1.15)	0.3
Transfer	1.1 (0.82-1.46)	0.5

More analyses

- Outcomes:
 - VTE event, plus split out into PE, DVT
 - Mortality
- Also included hospital-specific effects
- Also stratified by ISS category

Outcome	Ν	OR for LMWH	95% CI	p-value
VTE Event, w/o Hospital Effect	18,010	0.65	0.52-0.81	< 0.001
VTE Event, with Hospital Effect	17,895	0.67	0.50-0.92	0.01
VTE Event by ISS categories		\frown		
5-15	13,241	0.51	0.30-0.87	0.01
16-24	2,945	0.45	0.15-0.81	0.008
≥ 25	1,570	1.12	0.66-1.89	0.7
		\smile		
PE, w/o Hospital Effect	18,010	0.52	0.35-0.78	0.002
PE, with Hospital Effect	17,895	0.42	0.23-0.77	0.005
PE by ISS categories				
5-15	11,749	0.24	0.09-0.62	0.003
16-24	1,999	0.46	0.14-1.54	0.2
≥ 25	1,228	0.73	0.22-2.47	0.6
DVT, w/o Hospital Effect	18,010	0.70	0.54-0.90	0.005
DVT, with Hospital Effect	17,895	0.78	0.56-1.08	0.14
DVT by ISS categories				
5-15	12,869	0.61	0.33-1.13	0.11
16-24	2,945	0.49	0.26-0.92	0.03
≥ 25	1,560	1.31	0.76-2.30	0.3
Mortality, w/o Hospital Effect	18,010	0.64	0.50-0.83	0.001
Mortality, with Hospital Effect	18,010	0.57	0.41-0.79	0.001
Mortality by ISS categories				
5-15	13,328	0.61	0.38-0.97	0.04
16-24	2,820	0.67	0.29-1.54	0.3
≥ 25	1,611	0.50	0.26-0.94	0.03

Hospital-level analysis: Risk-Adjusted VTE event rates for LMWH vs heparin patients

Conclusions

• Overall, protective effects of LMWH

For VTE event and mortality

- Tends to be more noticeable in lower ISS patients

• Also seems to be 'hospital effect'

 In most hospitals, VTE event rates better for LMWH vs heparin – except those hospitals that use mostly heparin.

VTE

Elliott Haut, MD Johns Hopkins University

Venous Thromboembolism Prevention in Trauma: Can We Do Better?

Elliott R. Haut, MD, PhD, FACS Associate Professor of Surgery & Anesthesiology / Critical Care Medicine & Emergency Medicine & Health Policy / Management

@elliotthaut

Michigan TQIP

February 2, 2016

Why focus on VTE?

The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism

2008

VTE is common

 -350,000 to 600,000
 Americans suffer DVT and/or PE each year

http://www.surgeongeneral.gov/topics/d eepvein/calltoaction/call-to-action-ondvt-2008.pdf

U.S. Department of Health and Human Services

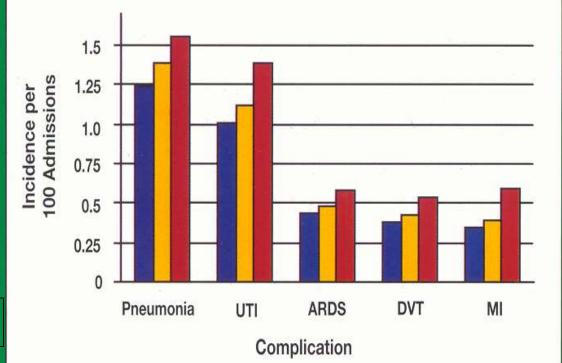
Why focus on VTE?

The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism

2008

- VTE is Deadly
 >100,000 deaths per year
- More deaths than combined from
 - Breast Cancer
 - Motor Vehicle Collisions
 - AIDS

http://www.surgeongeneral.gov/topics/d eepvein/calltoaction/call-to-action-ondvt-2008.pdf



U.S. Department of Health and Human Services

DVT is 4th most commonly reported complication in Trauma

The Journal of FRAUMA® Injury, Infection, and Critical Care

Large Trauma Registry Complication Rates as Related to Denominator Selection

Kardooni, J Trauma 2008

Patients

DVT Incidence After Trauma

- DVT rates reported as high as 58% of moderately to severely injured patients (ISS>=9)
- Rates lower in broader trauma populations
 - 0.36% in overall NTDB (Knudson)
 - 0.38%-0.54% in NTDB (Kardooni)

Geerts, NEJM 1994 Knudson, Ann Surg 2004 Kardooni, J Trauma 2008

Why focus on VTE?

• VTE is (mostly) preventable

VTE Should NOT be Considered a "Never Event"

- Not ALL events are preventable
- VTE occurs even in patients receiving best practice prophylaxis
- 8 RCTs of VTE Prophylaxis in Joint Replacement Surgery (4 TKA, 4 THR) – 0.3%-2.5% Symptomatic VTE

Streiff & Haut, JAMA 2009

Evidence Based VTE Prophylaxis Guidelines

- American College of Chest Physicians (ACCP)
- Eastern Association for the Surgery of Trauma (EAST)
- American Academy of Orthopedic Surgeons (AAOS)
- American College of Obstetricians and Gynecologists (ACOG)
- American College of Physicians (ACP)

Brief Summary of Evidence Based Prophylaxis Guidelines in Trauma

- American College of Chest Physicians (ACCP)
- Eastern Association for the Surgery of Trauma (EAST)
- Give LMWH- (Enoxaparin 30mg q12)
- If LMWH contraindicated- use mechanical – Sequential Compression Devices (SCDs)

Geerts, CHEST 2008 http://www.east.org/tpg/dvt.pdf

DVT Prophylaxis is Vastly Underutilized!

A Prospective Registry of 5,451 Patients With Ultrasound-Confirmed Deep Vein Thrombosis

Samuel Z. Goldhaber, MD, and Victor F. Tapson, MD, for the DVT FREE Steering Committee*

> We enrolled 5,451 patients with ultrasound-confirmed deep vein thrombosis (DVT), including 2,892 women and 2,559 men, from 183 United States sites in our prospective registry. The 5 most frequent comorbidities were hypertension (50%), surgery within 3 months (38%), immobility within 30 days (34%), cancer (32%), and obesity (27%). Of the 2,726 patients who had their DVT diagnosed while in the hospital, only 1,147 (42%) received prophylaxis within 30 days before diagnosis ©2004 by Excerpta Medica, Inc. **OHNS HOP**

(Am J Cardiol 2004;93:259-262)

Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study

Alexander T Cohen, Victor F Tapson, Jean-Francois Bergmann, Samuel Z Goldhaber, Ajay K Kakkar, Bruno Deslandes, Wei Huang, Maksim Zayaruzny, Leigh Emery, Frederick A Anderson Jr, for the ENDORSE Investigators*

- 68,183 patients
- 358 hospitals in 32 countries
- Prophylaxis
 - 58.5 % compliance surgical patients
 - 39.5 % compliance medical patients

Cohen, Lancet 2008

"The disconnect between evidence and execution as it relates to DVT prevention amounts to a public health crisis."

Samuel Z. Goldhaber, M.D., Associate Professor of Medicine, Harvard Medical School

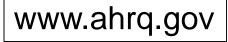
DEEP-VEIN THROMBOSIS: ADVANCING AWARENESS TO PROTECT PATIENT LIVES

White Paper

Public Health Leadership Conference on Deep-Vein Thrombosis Washington, D.C. • February 26, 2003

American Public Health Association

DVT: Advancing Awareness to Protect Patient Lives


American Public Health Association (APHA) White Paper 2003

Agency for Healthcare Research and Quality (AHRQ)

Deep vein thrombosis (DVT)-related pulmonary embolism (PE) is the most common cause of preventable hospital death¹

DVT prophylaxis of at-risk patients is the #1 strategy to improve patient safety in hospitals¹

Making Health Care Safer II: An Updated Critical Analysis of the Evidence for Patient Safety Practices

Agency for Healthcare Research and Quality Advancing Excellence in Health Care • www.ahrq.gov Evidence-Based Practice

Patient Safety

Table C. Strongly encouraged patient safety practices

- Preoperative checklists and anesthesia checklists to prevent operative and post-operative events
- Bundles that include checklists to prevent central line-associated bloodstream infections
- Interventions to reduce urinary catheter use, including catheter reminders, stop orders, or nurse-initiated removal protocols
- Bundles that include head-of-bed elevation, sedation vacations, oral care with chlorhexidine, and subglottic-suctioning endotracheal tubes to prevent ventilator-associated pneumonia
- Hand hygiene
- "Do Not Use" list for hazardous abbreviations
- Multicomponent interventions to reduce pressure ulcers
- Barrier precautions to prevent healthcare-associated infections
- Use of real-time ultrasound for central line placement
- Interventions to improve prophylaxis for venous thromboembolisms

http://www.ahrq.gov/research/findings/evidencebased-reports/services/quality/ptsafetysum.pdf

Making Health Care Safer II: An Updated Critical Analysis of the Evidence for Patient Safety Practices

Agency for Healthcare Research and Quality Advancing Excellence in Health Care • www.ahrq.gov

Patient Safety

Chapter 28. Prevention of Venous Thromboembolism: Brief Update Review

Elliott R. Haut, M.D., FACS; Brandyn D. Lau, M.P.H.

 "Strategies to increase appropriate prophylaxis for VTE" included on list of top 10 "Strongly Encouraged Patient Safety Practices"

http://www.ahrq.gov/research/findings/ evidence-based-reports/patientsftyupdate/ptsafetyllchap28.pdf

Surveillance Bias and Public Reporting of VTE

@elliotthaut

How did I get interested in VTE?

- Adult Trauma Performance Improvement
- Paraphrased letter we received
- Dear Johns Hopkins Adult Trauma
- You have the highest DVT rate of all Trauma Centers in Maryland
- Why?
- Sincerely, Maryland Institute for Emergency Medical Services Systems (MIEMSS)

A New Research Idea is Born

- Johns Hopkins screens aggressively
- What do other trauma centers do?
- Does this impact reported DVT rates?

Conflict Regarding Duplex Screening for asymptomatic DVT

 Conflicting data on efficacy and costeffectiveness of duplex screening of asymptomatic trauma patients

- Pro: Identify DVT early allowing treatment before fatal PE
- Con: Large expense, not cost effective, harm from anticoagulation

Should we Screen High-Risk Trauma Patients for DVT?

Conflicting Guidelines

VS.

The Global Leader in Clinical Chest Medicine

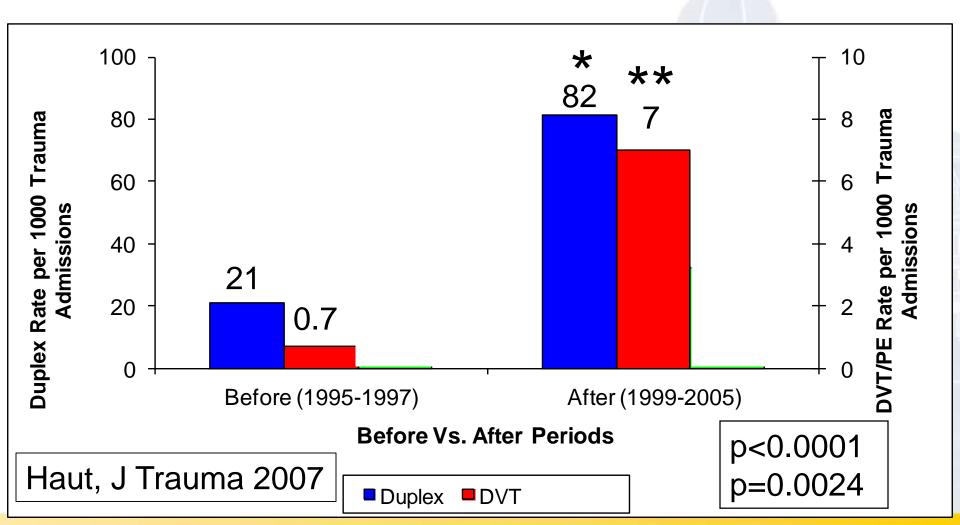
Rogers, J Trauma 2002 Gould, CHEST 2012

east

Eastern Association for the Surgery of Trauma (EAST) Guideline

 "Serial duplex ultrasound imaging of high-risk asymptomatic trauma patients to screen for DVT may be cost-effective and decrease the incidence of PE."

http://www.EAST.org/resources/treatment-guidelines Rogers, J Trauma 2002


American College of Chest Physicians (ACCP) Guidelines

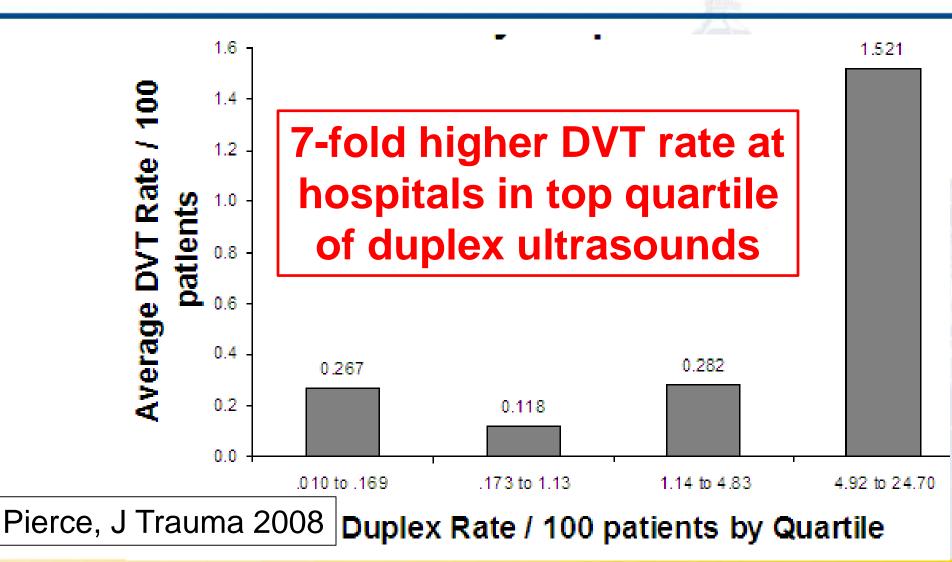
 "For major trauma patients, we suggest that periodic surveillance with venous compression ultrasonography should not be performed (Grade 2C)."

Single Center (JHH)- Duplex & DVT rates Before v. After Screening Guideline

Multi-Center (NTDB)- Hospital Level Duplex & DVT rates

 Trauma centers with higher rates of duplex ultrasound report higher DVT rates to the National Trauma Data Bank

The Journal of TRAUMA® Injury, Infection, and Critical Care

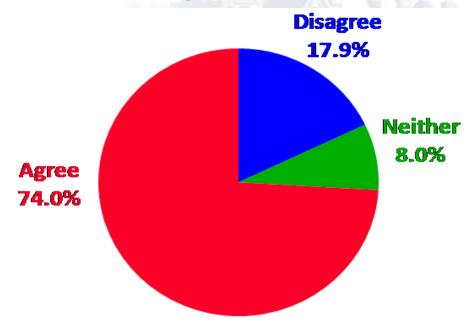

Surveillance Bias and Deep Vein Thrombosis in the National Trauma Data Bank: The More We Look, The More We Find

Charles A. Pierce, MPH, Elliott R. Haut, MD, Shahrzad Kardooni, MPH, David C. Chang, MBA, MPH, PhD, David T. Efron, MD, Adil Haider, MD, MPH, Peter J. Pronovost, MD, PhD, and Edward E. Cornwell III, MD

The More We Look, The More We Find

Hospital Screening Status is an Independent **Risk Factor** for DVT Reporting

Haut, J Trauma 2009


The Journal of TRAUMA® Injury, Infection, and Critical Care

Independent Risk Factors for Diagnosis of Deep Vein Thrombosis in Trauma Patients

	Odds Ratio	95% Confidence Interval
Treatment at "Screening" vs. "Non-Screening" Trauma Center	2.16	1.07-4.34
Age ≥ 40 years	2.00	1.74-2.30
Extremity Injury (AIS≥3)	1.96	1.68-2.30
Head Injury (AIS≥3)	1.53	1.22-1.92
Ventilator Days ≥ 3	5.14	3.66-7.22
Venous Injury	2.85	1.97-4.13
Major Surgery	4.79	4.08-5.62

Variability in Trauma Surgeons Opinions of DVT Screening

- AAST/EAST member survey
- 317 individual trauma surgeons

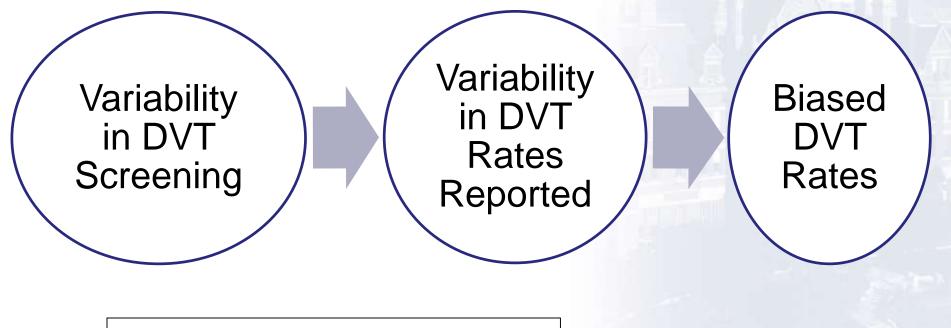
Haut, J Trauma 2011

"High risk asymptomatic patients should be screened for DVT"

A Classic Example of Surveillance Bias

 Providers who screen more aggressively by performing more duplex ultrasounds may identify more cases of DVT and appear to provide worse quality of care than those providers who order fewer tests

Haut & Pronovost, JAMA 2011


Implications

Surveillance Bias in Outcomes Reporting

Elliott R. Haut, MD

Peter J. Pronovost, MD, PhD

DVT, some clinicians use duplex ultrasound to screen highrisk asymptomatic trauma patients for DVT. Other clinicians argue this approach is neither clinically necessary nor

Haut & Pronovost, JAMA 2011

"We'll just use the test results anyway because it's the only data we have"

http://dilbert.com/strips/comic/2010-11-07

Defining Preventable Harm The VTE Example

 We suggested that "performance measures could link a process of care with adverse outcomes when defining incidences of preventable harm"

Preventable Harm = VTE + No Prophylaxis

Haut & Pronovost, JAMA 2011

Centers for Medicare & Medicaid Services listened

CMS.gov

Centers for Medicare & Medicaid Services

Medicaid/CHIP

Learn about your healthcare options

Innovation

Center

Regulations and Guidance

Research, Statistics, **Data and Systems**

EHR Incentives:

Learn about Stage 2

Click Here >

Outreach and Education

Search

Home > Regulations and Guidance > EHR Incentive Programs > Meaningful Use

Medicare-Medicaid

Coordination

Meaningful Use

EHR Incentive Programs

Getting Started

Medicare

Registration & Attestation

Medicare and Medicald EHR Incentive Program Basics

Meaningful Use

Stage 2

Clinical Quality Measures (CQMs)

Certified EHR Technology

Eligible Hospital Information

Medicaid State Information

Data and Program Reports

The Medicare and Medicaid EHR Incentive Programs provide financial incentives for the "meaningful use" of certified EHR technology to improve patient care. To receive an EHR incentive payment, providers have to show that they are "meaningfully using" their EHRs by meeting thresholds for a number of objectives. CMS has established the objectives for "meaningful use" that eligible professionals, eligible hospitals, and critical access hospitals (CAHs) must meet in order to receive an incentive payment.

Private

Insurance

The Medicare and Medicaid EHR Incentive Programs are staged in three steps with increasing requirements for participation. All providers begin participating by meeting the Stage 1 requirements for a 90-day period in their first year of meaningful use and a full year in their second year of meaningful use. After meeting the Stage 1 requirements, providers will then

have to meet Stage 2 requirements for two full years. Eligible professionals participate in the program on the calendar years, while eligible hospitals and CAHs participate according to the federal fiscal year.

 Financial incentives for the "meaningful use" of certified EHR technology to improve patient care

"Meaningful Use" Quality Reporting Criteria Related to VTE

• "Meaningful Use" of Electronic Health Record (EHR) Technology -VTE1 Prophylaxis within 24 hours of arrival -VTE2 ICU VTE Prophylaxis -VTE3 Anticoagulation Overlap Therapy -VTE4 Platelet Monitoring on UFH -VTE5 VTE Discharge Instructions -VTE6 Incidence of Potentially Preventable VTE

https://www.cms.gov/EHRIncentivePrograms/30_Meaningful_Use.asp

"Meaningful Use" Definition of Potentially Preventable VTE

•VTE-6 Incidence of Potentially Preventable VTE

• "This measure assesses the number of patients diagnosed with confirmed VTE during hospitalization (not present or suspected at admission) who did not receive VTE prophylaxis between hospital admission and the day before the VTE diagnostic testing order date."

Surveillance Bias in VTE Reporting in Surgery

Original Investigation

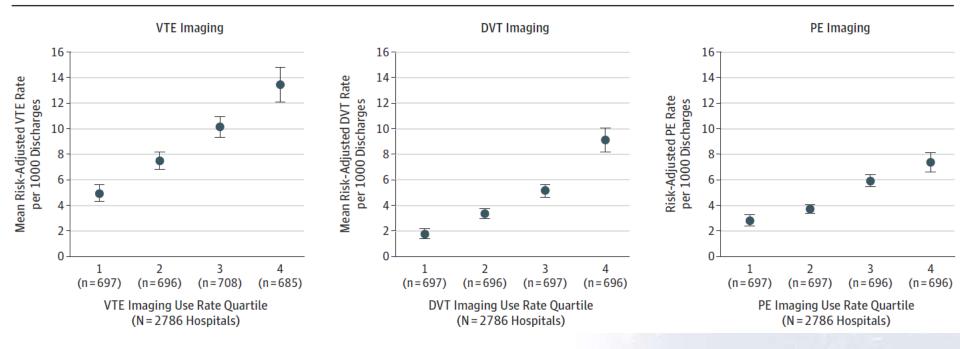
Evaluation of Surveillance Bias and the Validity of the Venous Thromboembolism Quality Measure

Karl Y. Bilimoria, MD, MS; Jeanette Chung, PhD; Mila H. Ju, MD; Elliott R. Haut, MD; David J. Bentrem, MD, MS; Clifford Y. Ko, MD, MS; David W. Baker, MD, MPH

JAMA. doi:10.1001/jama.2013.280048 Published online October 7, 2013.

Surveillance Bias in VTE Reporting in Surgery

- 2,786 hospitals
- 954,526 Medicare patients >=65 years
- 11 major operations


 AAA, CABG, craniotomy, colectomy, cystectomy, esophagectomy, gastric bypass, lung resection, pancreatic resection, proctectomy, total knee arthroplasty

Bilimoria, JAMA 2013

Surveillance Bias in VTE Reporting in Surgery

Figure 3. Mean Risk-Adjusted Event Rates by Imaging Use Rate Quartile

Bilimoria, JAMA 2013

Can a Systems Approach Improve VTE Prevention and Outcomes

@elliotthaut

What approaches can improve VTE prophylaxis ?

- "Passive dissemination of guidelines is unlikely to improve VTE prophylaxis practice."
- "A number of active strategies used together, which incorporate some method for reminding clinicians to assess patients for DVT risk and assisting the selection of appropriate prophylaxis, are likely to result in the achievement of optimal outcomes."

Tooher, A Systematic Review of Strategies to Improve Prophylaxis for Venous Thromboembolism in Hospitals. Ann Surg 2005.

Improving VTE Prophylaxis at The Johns Hopkins Hospital

Lessons from the Johns Hopkins Multi-Disciplinary **Venous Thromboembolism (VTE) Prevention** Collaborative BM

BMJ 2012;344:e3935

Michael B Streiff associate professor of medicine¹², Howard T Carolan quality and innovations project administrator³, Deborah B Hobson patient safety clinical specialist, surgical intensive care nurse and coordinator³⁴, Peggy S Kraus clinical specialist for anticoagulation⁵, Christine G Holzmueller senior research coordinator II, medical writer and editor³⁶, Renee Demski senior director, quality and safety³, Brandyn D Lau medical informatician⁷, Paula Biscup-Horn clinical pharmacy specialist, anticoagulation management⁸, Peter J Pronovost professor, director, senior vice president for patient safety and quality ⁶³⁹¹⁰, Elliott R Haut associate professor of surgery ³⁴⁶⁹¹¹

Prevention of Venous Thromboembolism (VTE) Adult Order Form - GENERAL SURGERY, SURGICAL ONCOLOGY, UROLOGIC, OR VASCULAR SURGERY

Patient Identification

PILOT WORKSHEET

Paper Order Sets

Allergies:	Weight:	Kg	Serum Creatini	ne*:		
	INDICAT	E RISK FAC	TORS (Check all ti	at apply)		
Serious Risk Factors Current, active cancer ⁴ Crevious DVT and/or PE ¹ Siroke within the past 3 months (non-hemorrhagic) Trautina (imijor or lower extremity) Heart or requiratory failure undargoing acute treatment Pregnancy and post-partom (<1 month) Inheritod or acquired thrombophilia			Other Risk Factors Dimmobility (bedroit/sitting 2:3 days) or paralysis Dimmobility (bedroit/sitting 2:3 days) or paralysis Dimension (3MD > 30 kg/M*) Cantral venous catheterizations Dimension (kg/M*) Dimension (kg/M*) Acute medical illness or spsis District (kg/M*) Dimension (kg/M*) Myeloproliferative disorder Distrogen receptor Selective estrogen receptor Inflaematory bowel disease modulators (SERMs) Nephrotic syndrome			
		RIS	K CATEGORIES			
Low Risk © Minor surgery (< 30 min), Age <40 years, with NO additional risk factors OR © Vascular surgery with NO additional risk factors OR © Lapsrocceptic procedures with NO additional risk factors OR © Low risk neologic procedures (TURP, etc.)	Moderate △ Minor surgery (<30 m years, WITH any addition (one or more) OR △ Minor surgery (<30 m years, with NO addition OR ○ Major surgery (<30 m years with NO addition OR ○ Laparoscopic surgery additional risk factors (o	nin), age <40 onal risk factors nin), age 40-60 al risk factors nin), age < 40 al risk factors WITH any	Eactors C Minor surgery (- additional risk fact Major surgery (- additional risk fact WITH or WITHO	OR 30 mini, age 40-4 ors (one or more) OR 30 mini, age < 40 ors (one or more), 31 my additional OR urgery (> 30 mini)	OUT any additional risk	Very High Risk ¹² O Majot surgery (>30 min) at any age WITH any SERIOUS RISK FACTORS OR O Majot surgery (>30 min), age >60 years WITH any additional risk factors (one or more)
¥	+		ORDER	+		+
Low Risk Moderate Risk n No phermacologic prophylaxis is indicated. Early and pervistent mobilization recommended. Please specify ambulation plan		s SC QI 2 hours'	t ¹ □ Heparin 5,000 Gnits SC Q8 hours ¹		High Risk Units SC QR hours? OR mg SC QDay ^{14,1} PE with more bleeds AND D SCD ⁹	
		CONT	RAINDICATIONS	1		ORDERS1
Active anearysen (cerebral or sortic dissecting) Descterial endocarditis or pericarditis Active peptic ulcer disease, alcerative GI lesions Malignant hypertension Seven head trauma			nbocytopenia (platalat co	n the point 48 hrs. of HIT secol or spinal tap <	If contrain (Check Discontinue Discontinue Discontinue	dication present:
 Patients undergoing major <u>Mandpulation of epidami</u> wall 2 hours to recknes. If or multiple punctures emp <u>Patients with OPCL 1-300</u> For morbidy obese patient 	e concer mergery who are >60 contacter should be undertade catheter is to remain in place, legend, wait 24 hours to re-ato mimin, heparin is strengty o	Pyears, or patients in at the nucler (trou- heparin aue is <u>atro</u> et any pharmacolog recommended over o bariatric surgery.	with previous DFT-PB, po- gely of autocoagniont effect mgby recommended, with e- gic thromboprohylaxia emocaparin. Henny SC 012 anocaparin #Img SC 012	t-discharge prophyl With enosopatin n skale > 1 hour offer it weed, the manylic bours wat more effe	andrar 9CD watti the bleading ri laxir for 2 to 4 weeks is recomme emove the catheter at least 10-1 removal. (Eblood is present wit charer recommends 30mg SC Q) chree them 31mg SC Q12 hours i	ended 2 hours after the dose h catheter manipulatio Day
	MD Signature	and a protocol and	MD Name (p		MD LD Num	her

Date	Time	MD Signature		MD Name (printed)	MD I.D Number	
Order Note	d	Date	Time	Signature	Name (printed)	

Improving VTE Prophylaxis at The Johns Hopkins Hospital

- Mandatory VTE risk stratification tool into the computerized provider order entry (CPOE) system
- Advanced computerized clinical decision support (CDS)

Benefits of the Computerized VTE Prevention System

- Puts VTE prevention into the work flow
- Enables rapid, accurate risk stratification and risk-appropriate VTE prophylaxis
- Applies evidence directly to clinical care
- Allows for performance monitoring/reporting

Keys to Success

- Multidisciplinary team

 Physicians, Nurses, Pharmacists, Informatics
- Leadership buy-in
- Collaborate with service teams
- Educate front-line providers
- Measure baseline performance
- Conduct ongoing performance evaluations

Streiff, BMJ 2012

Does Improving Prophylaxis Change Outcomes?

- We thought we were increasing quality and improving patient care
- But could we show hard data?

•YES •Johns Hopkins Trauma Surgery Example

Does Improving Prophylaxis Change Outcomes? The JHH Trauma Example

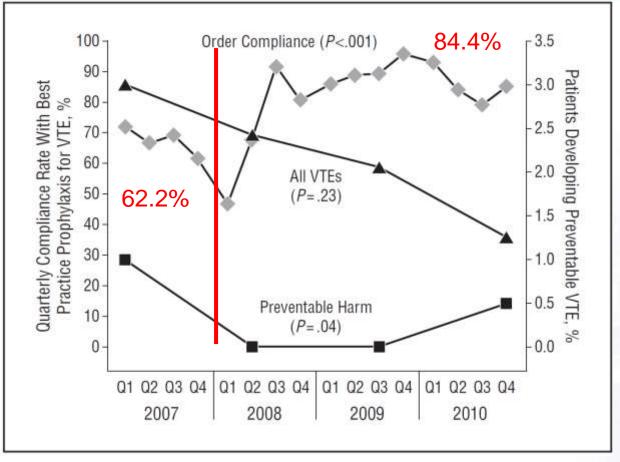
BUILDING A SURGICAL EXPERTISE IN INFORMATICS

Improved Prophylaxis and Decreased Rates of Preventable Harm With the Use of a Mandatory Computerized Clinical Decision Support Tool for Prophylaxis for Venous Thromboembolism

Elliott R. Haut, MD; Brandyn D. Lau, MPH; Franca S. Kraenzlin, MHS; Deborah B. Hobson, BSN; Peggy S. Kraus, PharmD, CACP; Howard T. Carolan, MPH, MBA; Adil H. Haider, MD, MPH; Christine G. Holzmueller, BLA; David T. Efron, MD; Peter J. Pronovost, MD, PhD; Michael B. Streiff, MD

Arch Surg. 2012;147(10):901-907

Haut, Arch Surg 2012


Does Improving Prophylaxis Change Outcomes?

- Single Trauma Center
- Pre/Post Intervention Study
- 1-year PRE vs. 3-years POST
- Retrospective data collection
- IRB approved

Haut, Arch Surg 2012

Does Improving Prophylaxis Change Outcomes?

Significant increase in VTE prophylaxis Significant drop in preventable harm from VTE 1.0% vs. 0.17% (p=0.04)

Haut, Arch Surg 2012

VTE Prophylaxis-Computerized Decision Support

www.natfonline.org

Latest News and Updates

Consensus Statement: Call To Action On

DVTeamCareTM Hospital Award

Tell Us How You Fight

DVTEAMTM CARE HOSPITAL AWARD WINNER

Search

The Johns Hopkins Hospital DVTeamCare™ Hospital Award

Award Nomination Deadline October 15, 2010

The North American Thrombosis Forum Is proud to have been selected by Eisal, Inc. to help develop the DVTeamCare(TM) Hospital Award. The DVTeamCareTM Hospital Award is a new award providing national recognition to hospitals that have made significant commitment to preventing DVT and its potentially fatal complications. NATF has been engaged to identify judges for the award, who also developed appropriate criteria.* The applications from the 22 hospitals nominated for the 2009 DVTeamCareTM Hospital Award are currently being reviewed by a three-judge panel was selected by NATF. Winners will be announced shortly

Preventing Hospital-Acquired Venous Thromboembolism

A Guide for Effective Quality Improvement

Agency for Healthcare Research and Quality Advancing Excellence in Health Care • www.ahrq.gov

Three Examples of Effective Implementation and Clinical Decision Support

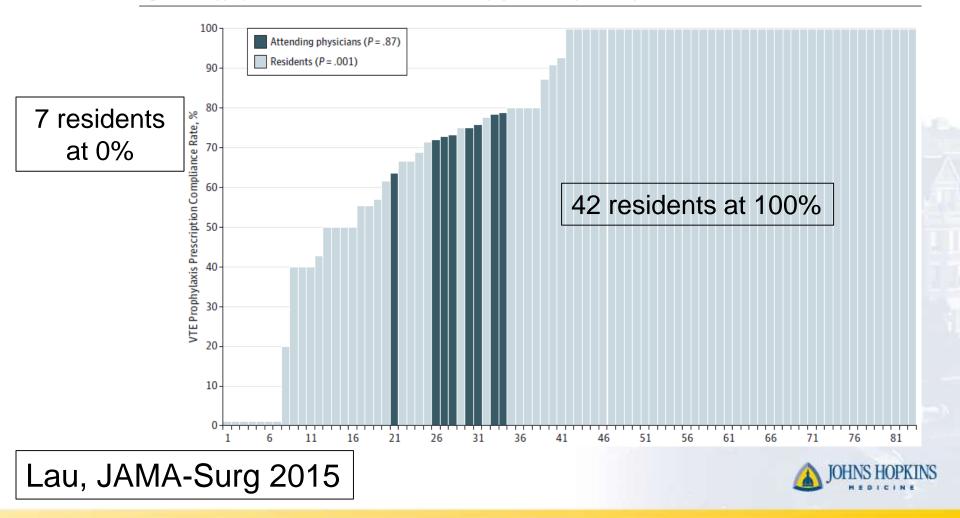
The following are examples of effective order set design and implementation. They illustrate the central importance of implementation and clinical decision support techniques across disparate hospital settings and VTE risk assessment models.

The Johns Hopkins collaborative team used the "translating research into practice" (TRIP) model to implement mandatory VTE risk assessment and risk-appropriate prophylaxis.⁵ The TRIP model is consistent with the principles presented throughout this guide. Important steps included summarizing the evidence from a centralized steering group; identifying barriers through pilot testing, good measurement, and feedback; and reinforcing appropriate prophylaxis through staff engagement, education, regular evaluation, good clinical decision support in order sets, and layered interventions to reinforce the protocol.⁶

www.AHRQ.gov 2015

Improving VTE Prophylaxis Administration with Targeted Performance Feedback

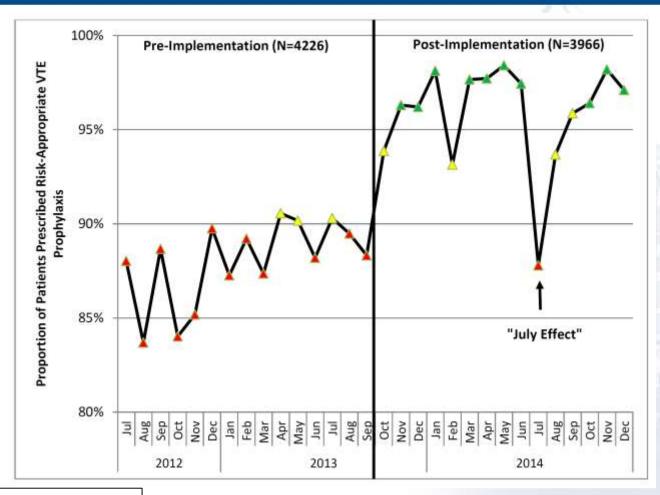
@elliotthaut


The Role of Health Informatics

- Harness the power of analytics
- Bringing performance data to individual providers and units
- Can competition drive improvements?

Trauma Attending & Resident Prophylaxis

Figure. Risk-Appropriate Venous Thromboembolism (VTE) Prophylaxis Prescription Compliance Rates



			CURRENT MONTH					
	RANK		September 2013					
		UID	Compliant Orders	Number of Orders	Compliance			
	1	A033	11	11	100%			
	1	A111	12	12	100%			
1	1	A092	2	2	100%			
	1	A112			n/a			
	1	A072	14	14	102%			
-	1	A131	7	7	1095			
	1	A053	2	2	100%			
	1	A034	4	4	100%			
1	1	A024	8	8	100%			
	1	A161	2	2	100%			
	1	A045			n/a			
	1	A025	5	5	100%			
	1	A035			n/a			
	1	A043	7	7	100%			
-	1	A055	2	2	102%			
	1	A004	1	1	109%			
_	1	A122			n/a			
	1	A121	1	1	10.9%			
	1	A014			n/a			
-	1	A082			n/a			
	1	A062		-	n/a			
-	22	A012	4	4	100%			
	23	A015	9	9	100%			
	23	A071	8	8	100%			
-	25	A052	10	11	90.9%			
	26	A091	11	12	91,7%			
	26	A102	8	9	88.97			
-	28	A032	4	4	100%			
-	29	A141	13	15	801756			
-	30	A005	9	9	100%			
-	31	A023	14	15	93.3%			
	32	A051	2	2	100%			
-	32	A081	6	7	575			
	34	A042	7	8	BI STR.			
-	35	A022	6	7	1990			
		5116		1	10.000			
6	87	, —	70/	1	100%			
X	<		7%	4	100%			
		- /	/0	_	EL MA			
				6 12	Real Provide State			
	0			2	Sec. and			
			pt	2	20,478			
				12	Statute.			
					1000			
	45		5	4	100%			
-	46	A013		7.50	and the second			
0	VERALL		235	268	87.7%			

		October 2013			
RANK	UID	Compliant Orders	Number of Orders	13 Compliance	
1	A033	4	4	100%	
3 1	A111	7	7	100%	
1	A072	8	-8	100%	
1	A131	8	8	100%	
1	A025	13	13	100%	
1	A043	13	13	100%	
1	A092	3	3	100%	
1	A161	10	10	100%	
1	A034	8	8	100%	
1	A112	2	2	100%	
1	A053	1	1	100%	
1	A055	5	5	100%	
1	A122	8	8	100%	
1	A024				
1	A035	3	3	100%	
1	A004	2	2	100%	
1	A082				
1	A062				
19	A012	7	7	100%	
20	A102	7	7	100%	
13	<mark>.3</mark>	%	9 12 6	100% 100%	
			12 6 9	100% 100%	
			12 6	100% 100%	
		% Der	12 6 9 3	100% 100% 100%	
			12 6 9 3 13	100% 100% 100% 100%	
	ok		12 6 9 3 13 1	100% 100% 100% 100%	
Ct	ok	ber	12 6 9 3 13 13 5	100% 100% 100% 100% 100% 100%	
		<mark>)er</mark>	12 6 9 3 13 1 5 6	100% 100% 100% 100% 100% 100% 100%	
Ct	OK A045 A023 A061		12 6 9 3 13 1 5 6 10	100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32	A043 A023 A061 A121	Der	12 6 9 3 13 1 5 6 10 8	100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33	A023 A023 A061 A121 A051)er	12 6 9 3 13 1 5 6 10 8 7	100% 100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33 34	A023 A023 A061 A121 A051 A001)er	12 6 9 3 13 1 5 6 10 8 7	100% 100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33 34 35	A045 A023 A061 A121 A051 A001 A022	Der 5 10 7 6 11	12 6 9 3 13 1 5 6 10 8 7 12	100% 100% 100% 100% 100% 100% 100% 100%	
259 30 31 32 33 34 35 35	A043 A023 A061 A121 A051 A001 A022 A042	Der 6 10 7 6 11 5	12 6 9 3 13 1 5 6 10 8 7 12 6	100% 100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33 34 35 35 35 37	A023 A023 A061 A121 A051 A001 A022 A042 A002	Der 6 10 7 6 11 5 2	12 6 9 3 13 1 5 6 10 8 7 12 6 2	100% 100% 100% 100% 100% 100% 100% 100%	
23 30 31 32 33 34 35 35 37 38	A023 A023 A061 A121 A051 A001 A022 A042 A002 A031	Der 6 10 7 6 11 5 2 2 2	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2	100% 100% 100% 100% 100% 100% 100% 100%	
23 30 31 32 33 34 35 35 37 38 39	A043 A023 A061 A121 A051 A001 A022 A042 A042 A042 A042 A042	Der 6 10 7 6 11 5 2 2 6	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8	100% 100% 100% 100% 100% 100% 100% 100%	
25 30 31 32 33 34 35 35 37 38 39 39	A043 A043 A061 A121 A051 A001 A022 A042 A042 A042 A042 A042 A045 A151	Der 6 10 7 6 11 5 2 2 6 2	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8 2	100% 100% 100% 100% 100% 100% 100% 100%	
23 30 31 32 33 34 35 35 37 38 39 39 41	A045 A045 A026 A026 A021 A021 A022 A042 A002 A031 A065 A151 A044	Der 6 10 7 6 11 5 2 2 6 2	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8 2	100% 100% 100% 100% 100% 100% 100% 100%	
23 30 31 32 33 34 35 35 37 38 39 39 41 42	A043 A023 A023 A021 A121 A021 A022 A042 A002 A042 A002 A031 A065 A151 A044 A041	Der 6 10 7 6 11 5 2 2 6 2 1	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8 2 1	100% 100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33 34 35 35 37 38 39 39 41 42 42	A043 A023 A023 A021 A021 A021 A021 A022 A042 A002 A031 A022 A031 A065 A151 A044 A041 A014	Der 6 10 7 6 11 5 2 2 6 2 1 2	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8 2 2 8 2 1 3	100% 100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33 34 35 37 38 39 39 41 42 42 44	A043 A023 A023 A021 A121 A021 A022 A042 A002 A042 A002 A031 A065 A151 A044 A041 A014 A011	Der 6 10 7 6 11 5 2 2 6 2 1 2 6 2 1	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8 2 2 8 2 1 1 3 7	100% 100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33 34 35 37 38 39 39 41 42 42 44 45	A043 A023 A023 A061 A125 A061 A021 A002 A001 A022 A042 A002 A031 A065 A151 A044 A041 A014 A011 A021	Der 6 10 7 6 11 5 2 2 6 2 1 2 6 2 1 2 6 6 6	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8 2 2 8 2 1 1 3 7 6	100% 100% 100% 100% 100% 100% 100% 100%	
Ct 30 31 32 33 34 35 35 37 38 39 39 41 42 42 44 45 46	A043 A023 A061 A125 A061 A125 A001 A022 A002 A002 A031 A065 A151 A044 A041 A014 A011 A021 A101	Der 6 10 7 6 11 5 2 2 6 2 1 2 6 2 1 2 6 2 1 2 6 2 1 2 6 2 1 1 2 6 2 1 1 2 6 2 1 1 2 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1	12 6 9 3 13 1 5 6 10 8 7 12 6 2 2 8 2 2 8 2 2 1 1 7 6 7 7	100% 100% 100% 100% 100% 100% 100% 100%	

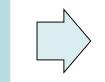
		CURRENT MONTH				
		CURRENT MONTH November 2013				
RANK	UID	Compliant	Number of			
		Orders	Orders	Compliance		
1	A033	4	4	100%		
1	A111	5	5	100%		
1	A072	18	18	100%		
1	A025	9	9	100%		
1	A161	7	7	100%		
1	A092	3	3	100%		
4	A424	,	2	100%		
				100%		
	\mathbf{C}	3%		100%		
30)	$\mathbf{D}^{\prime}\mathbf{O}$		100%		
				100%		
		-		100%		
<u> </u>		mh	<u> </u>	100%		
JV	EI	mb		100%		
	U .		U .	100%		
-	-			100%		
1	A062	3	3	100%		
18	A102	14	14	100%		
19	A043	3	4	75.0%		
20	A012			n/a		
21	A091	9	9	100%		
22	A061	9	9	100%		
23	A141	1	1	100%		
23	A052	2	2	100%		
23	A032			n/a		
23	A053	3	4	75.0%		
27	A015	4	4	100%		
28	A005			n/a		
29	A045	1	1	100%		
30	A023	8	8	100%		
31	A121	4	4	100%		
32	A061	17	18	94.4%		
33	A042	12	12	100%		
34	A071	10	12	83.3%		
35	A065	10	11	100%		
36	A001	1	1	100%		
37	A051	-	-	n/a		
38	A022			n/a		
39	A0022	1	1	100%		
39	A002	2	2	100%		
39 41	A014 A041	11	11	100%		
41	A041			n/a		
		13	16			
43	A151	13	16	81.3%		
44	A044		-	n/a		
45	A101	9	9	100%		
46	A003	7	7	100%		
	A021	2	2	100%		
47	1044					
48	A011			n/a		
48 49	A011 A013	2	4 270	n/a 50.0% 96.3%		

Surgery Resident Feedback Improves VTE Prophylaxis

Lau, Ann Surg 2015

Missed Doses of VTE Prophylaxis

@elliotthaut


A Big Assumption

- As physicians, we assume that medication orders we place are consistently delivered
- But is that truly the case?
- Does prescription = administration?

Steps to Optimal Pharmacologic VTE Prophylaxis

Provider Prescription

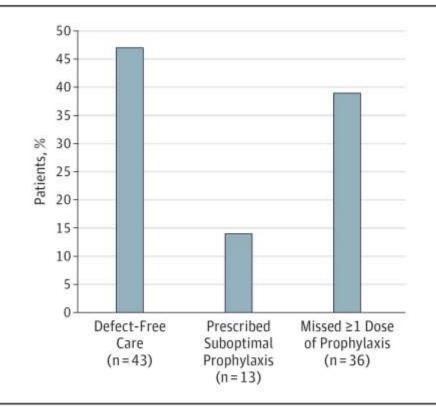
Nurse Administration

Patient Acceptance

Do Missed VTE Prophylaxis Doses Matter?

Methods

- Retrospective analysis
- 202 trauma and general surgery patients ordered enoxaparin
- Results
 - Overall incidence of DVT = 15.8%
 - 58.9% of patients missed >=1 dose
 - DVT compared missed vs. no missed doses
 - 23.5% vs. 4.8% (p < 0.01)


Louis, JAMA Surgery 2014

Do Missed VTE Prophylaxis Doses Matter?

Figure. Categorization of Patients With Hospital-Acquired VTE By Process of Care Appropriateness

- 92 VTE patients
- 39% missed
 >=1 dose of
 prophylaxis

Of the 92 patients with a venous thromboembolism (VTE), 43 (47%) received defect-free care, while 49 (53%) had truly potentially preventable VTE and were in the prophylaxis-failure group (ie, 13 of 92 patients were prescribed suboptimal prophylaxis [14%], and 36 of 92 patients missed \geq 1 dose of prescribed prophylaxis [39%]).

Haut, JAMA Surgery 2015

Missed Doses of VTE Prophylaxis Medications at Johns Hopkins

- December 1, 2007 to June 30, 2008
 - ->100,000 doses
 - -12% of doses not administered
 - Patient refusal most frequent (~60%) documented reason

PLOS ONE: Patterns of Non-Administration of Ordered Doses of Venous Thromboembolism Prophylaxis: Implications for Novel Intervention

PLOS ONE

Patterns of Non-Administration of Ordered Doses of Venous Thromboembolism Prophylaxis: Implications for Novel Intervention Strategies

Kenneth M. Shermock – , Brandyn D. Lau, Elliott R. Haut, Deborah B. Hobson, Valerie S. Ganetsky, Peggy S. Kraus, Leigh E. Efird, Christoph U. Lehmann, Brian L. Pinto, Patricia A. Ross, Michael B. <u>Streiff</u>

Shermock, PlosOne 2013

EDICINE

What's the Real Story Behind Missed Doses?

- "Hidden Barriers to Delivery of Pharmacologic Venous Thromboembolism Prophylaxis"
 - SURVEY "I have the clinical knowledge and experience to determine if it is necessary to administer DVT/PE prophylaxis injections to patients."
 - AGREE 87%/79% medicine/surgery
 - FOCUS GROUP INTERVIEWS "We make the clinical decision all the time as to whether a patient needs VTE prophylaxis every day, based on how much the patient is ambulating."

Elder, Journal of Patient Safety epub 2014

Our PCORI Project

DCOTI Patient-Centered Outcomes Research Institute

Preventing Venous Thromboembolism: Empowering Patients and Enabling Patient-Centered Care via Health Information Technology

Principal Investigator

Elliott Haut, MD, PhD

Organization	Funding Announcement
Johns Hopkins University	Assessment of Prevention, Diagnosis, and Treatment Options
State	Project Budget
Maryland	\$1,499,194
Year Awarded	Project Period
2013	3 years
	event-life-threatening-complication

Our PCORI Objectives

- 1) Enable patients to make informed decisions about their preventive care by improving the quality of patient-nurse communication about the harms of VTE and benefits of VTE prophylaxis
- 2) Empower patients to take an active role in their VTE preventive care
- 3) Identify and facilitate active engagement of patients who are not administered doses of VTE prophylaxis using a real-time escalating alert

http://www.pcori.org/research-in-action/improving-patientnurse-communication-prevent-life-threatening-complication

Our PCORI Collaborators / Key Stakeholders

ClotCare Online Resource

Helping others improve lives through anticoagulation

THE JOHNS HOPKINS HOSPITAL

Patient and Family Advisory Council

north american thrombosis forum

VATF

http://www.pcori.org/research-in-action/improving-patientnurse-communication-prevent-life-threatening-complication

	Ρ	CORI We	bsite "R	esear	rch	in A	ctio	n"
00	cori	Patient-Centered Outcomes R	esearch Institute	BLOG	CAREERS	NEWSROOM	SUBSCRIBE	CONTACT
2	ABOUT US	FUNDING OPPORTUNITIES	RESEARCH & RESULTS	GET INVOLVED	MEETIN	NGS & EVENTS		

Research & Results

OUR PROGRAMS

RESEARCH WE SUPPORT

HOW WE SELECT RESEARCH TOPICS

RESEARCH METHODOLOGY

PCORNET: THE NATIONAL PATIENT-CENTERED CLINICAL RESEARCH NETWORK

RESEARCH IN ACTION

COLLABORATING WITH OTHER RESEARCH FUNDERS

Improving Patient-Nurse Communication to Prevent a Life-Threatening Complication

Hospitalized patients are at increased risk for potentially fatal blood clots in their legs and lungs; a Baltimore team is exploring how to ensure wider use of preventive measures.

Baltimore, **MD**—Susan Kulik, DNP, MBA, RN was at her job as a surgical nurse at Johns Hopkins University Hospital in Baltimore when she slipped on a patch of wet floor and fractured her hip. The hospital admitted her right away for surgery to insert pins to stabilize her fractured bones.

The morning after the surgery, Kulik woke around 7 a.m., unable to breathe. "I got very dizzy and scared," Kulik says. "I thought I was going to die. It was an awful feeling."

A blood clot had formed in a vein deep in Kulik's leg, then broken off and traveled to her lung, where it blocked blood flow. This condition, venous thromboembolism (VTE), includes the formation of blood clots in deep veins and pulmonary embolism, in which a clot ends up in the lungs.

"I got very dizzy and scared ... I thought I was going to die. It was an awful feeling." Susan Kulik

AT A GLANCE

Preventing Venous Thromboembolism: Empowering Patients and Enabling Patient-Centered Care via Health Information Technology

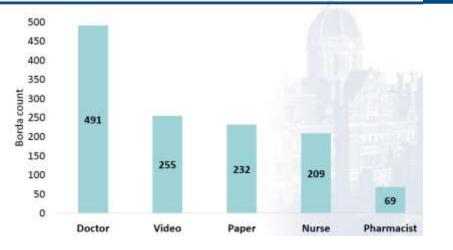
Principal investigator: Elliott R. Haut, MD, PhD Johns Hopkins University

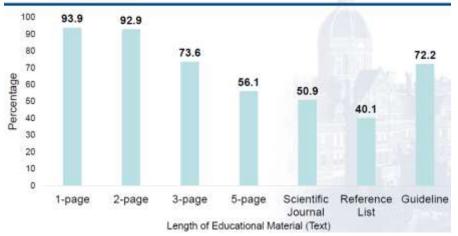
Goal: To increase patient understanding and improve

What VTE Education Do Patients Really Want? Results from a Delphi Survey

@elliotthaut

Modified Delphi Method


- Iterative process involving surveys, feedback and revisions
- Engaged patients and family members
- Recruited via email and/or social media (websites, Facebook, Twitter) through respective organizations
- > 400 respondents


What Do Patients Want?

How Do Patients Want To Learn About VTE?

What Do Patients Want to Learn about VTE

How Much Are Participants Willing to Read?

Preferred Length Of Video?

What Do Patients Want?

Patient VTE Education Menu

2 Page Patient education form Including description of symptoma, prevention, risk factors and complications

so minute Patient education video Including patient stories told by the potients themselves and content experts

> Nurse educator engagement Some scripted content

What Do Patients Want? Paper Form (2-pages)

	· · · · · · · · · · · · · · · · · · ·
The Johns Hopkins Hospital Patient Information	Original: Date 05/31/2014 Department: VTE
How Do I Prevent Blood Clots?	Collaborative/Surgery
Venous Thromboembolism (VTE)	
Deep Vein Thrombosis (DVT)	
Pulmonary Embolus (PE)	
 Blood clots are called Venous Thromboembolism (VTE). There Deep Vein Thrombosis (DVT) is a clot in a deep vein, us Pulmonary Embolism (PE) is a clot that has broken off a lungs. This can cause death. 	sually an arm or leg
	How Do I Prevent Blood Clots? Venous Thromboembolism (VTE) Deep Vein Thrombosis (DVT) Pulmonary Embolus (PE) Blood clots are called Venous Thromboembolism (VTE). There • Deep Vein Thrombosis (DVT) is a clot in a deep vein, u • Pulmonary Embolism (PE) is a clot that has broken off a

www.hopkinsmedicine.org/armstrong/
 bloodclots
 They spoke,
 we listened

What Do Patients Want? Video

- Patients wanted
 - 10 minute video
 - Physicians, nurses and patients talking
- Screened for JHH PFAC

 Changes based on group feedback

 They spoke, <u>http://bit.ly/bloodclots</u> we listened

http://bit.ly/bloodclots Video

How Do I Prevent Blood

How Do I Prevent Blood

1:53 / 11:10

CC

•

Ð

You Tube

IOHNS HOPI

What Do Patients Want? Patient Education Intervention Project

- Real time alert of dose non-administration from POE system via pager/email
- Patient education bundle
 - Targeted education
 - Direct one-on-one discussion with nurse
 - Supported by paper handout and/or video
- Prospective Cohort Study

 April 2015 to December 2015 (8 months)

THE WALL STREET JOUR

Home

World U.S. Politics Economy

Business Tech Markets

Opinion

Arts Life Real Estate

STYLE & FASHION Your Top 7 Men's Style Questions for Fall, Answered

EATING & DRINKING Europe (Finally) Wakes Up to Superior Coffee

ADVENTURE & TRAVEL A Weekend Away in Southern England's Wine Country

RUMBLE SEAT Subaru Forester: Function Over Form

LIFE | HEALTH | THE INFORMED PATIENT

Blood Clot Prevention Is Higher Priority at Hospitals

Many patients don't receive anticlotting drugs; nurses don't always give them

"Everyone assumed that once we got doctors to order the right medications, the rest would magically fall into place," says Dr. Haut. "It turns out that was very naive thinking. The nurse administration and patient acceptance phases are just as critical."

Dr. Haut is now leading a new project funded by the nonprofit Patient-Centered Outcomes Research Institute that includes training sessions for nurses about improving communication with patients and a special admission package for patients about taking an active role in clot prevention. Hopkins turned to some patients who have suffered blood clots to review the materials, talk to nurses, and tell their own stories in a video to convey the dangers of clots.

http://on.wsj.com/1M18Aqu

Hospitals are intensifying inpatient care to prevent potentially fatal blood clots. WSJ's Laura Landro and Johns Hopkins' Dr. Elliott Haut join Tanya Rivero on Lunch Break. Photo: Getty

Acknowledgements

@elliotthaut ehaut1@jhmi.edu

- Hopkins VTE Website (with paper forms)
 - http://www.Hopkinsmedicine.org/Armstrong/bloodclots
- Patient Education Video
 - http://bit.ly/bloodclots
- Wall Street Journal article

 http://on.wsj.com/1M18Aqu
- PCORI Research in Action
 - <u>http://www.pcori.org/research-in-action/improving-patient-nurse-communication-prevent-life-threatening-complication</u>

EXTRA SLIDES Will NOT be Discussed

Focus on VTE Prevention in Trauma

Inferior Vena Cava (IVC) Filters for VTE Prophylaxis in Trauma

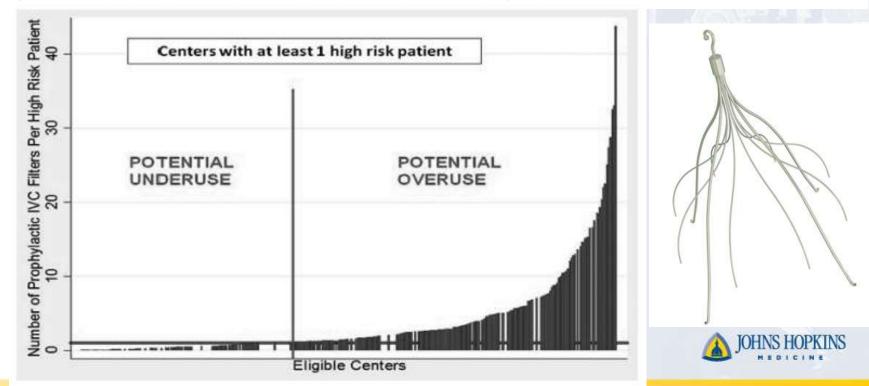
Conflicting Guidelines

VS.

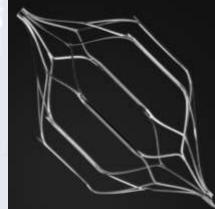
The Global Leader in Clinical Chest Medicine

Rogers, J Trauma 2002 Gould, CHEST 2012

east


- Conflicting Guidelines
- EAST "At this time, we recommend consideration of IVC filter insertion in patients without a documented DVT or PE who meet high-risk criteria and cannot be anticoagulated." (Rogers J Trauma 2002)
- ACCP "For major trauma patients, we suggest that an IVC filter should not be used for primary VTE prevention (Grade 2C)." (Gould 2012 CHEST)

Variation in Prophylactic Inferior Vena Cava (IVC) Filter Use


Unwarranted National Variation in the Use of Prophylactic Inferior Vena Cava Filters After Trauma: An Analysis of the National Trauma Databank

Lesly A. Dossett, MD, MPH, Raeanne C. Adams, MD, and Bryan A. Cotton, MD, MPH, FACS

Practice Patterns and Outcomes of Retrievable Vena Cava Filters in Trauma Patients: An AAST Multicenter Study

- 599 patients at 21 Trauma Centers
- Very low retrieval rate (22%)
- "The practice patterns of retrievable IVC filter use should be re-examined."

Karmy-Jones, J Trauma 2007

Number Needed to Treat (NNT) to prevent one PE is 109

Figure 2. Forest Plot of Relative Risk (RR) of Pulmonary Embolism (PE) With Use of Inferior Vena Cava (IVC) Filters vs No IVC Filters in Trauma Patients

	IV	C Filters	No I	VC Filters				
Source	No. of PE Events	Total No. of Participants	No. of PE Events	Total No. of Participants	RR (95% CI)		IVC No IVC Filters Filters	Weight, %
Wilson et al, ²⁷ 1994	0	15	8	111	0.10 (0.00-29.45)	<		4.76
Khansarinia et al, 30 1995	0	108	13	216	0.05 (0.00-1.50)			13.14
Rodriguez et al, ³¹ 1996	1	40	14	80	0.14 (0.02-1.05)			38.88
Gosin et al, ²⁸ 1997	0	99	12	249	0.06 (0.00-2.29)			11.23
Gorman et al, ³² 2009	1	54	0	58	3.07 (0.13-71.20)	-		15.64
Rajasekhar et al, ²⁵ 2011	0	18	1	16	0.32 (0.01-6.91)	-		16.36
All	2	334	48	730	0.20 (0.06-0.70)	-	\checkmark	100.00
						0.00033	1.0 RR (95% CI)	2993

Weights are calculated from random-effects analysis. Dashed line indicates the overall weighted point estimate (0.20); diamond, same overall weighted point

estimate (95% CI). Shadow size varies relative to weight assigned to each study. Overall $l^2 = 0\%$ (P = .48). Test of RR = 1 (z = 2.52; P = .01).

Haut, JAMA Surgery 2013

Number Needed to Treat (NNT) to prevent one fatal PE is 1099

Figure 3. Forest Plot of Relative Risk (RR) of Fatal Pulmonary Embolism (PE) With Use of Inferior Vena Cava (IVC) Filters vs No IVC Filters in Trauma Patients

	IVC	C Filters	No l	VC Filters				
Source	No. of Fatal PE Events	Total No. of Participants	No. of Fatal PE Events	Total No. of Participants	RR (95% CI)		IVC No IVC Filters Filters	Weight, %
Wilson et al, ²⁷ 1994	0	15	3	111	0.23 (0.00-70.76)) — — — —		15.23
Khansarinia et al, ³⁰ 1995	0	108	9	216	0.07 (0.00-2.16)			42.31
Rodriguez et al, ³¹ 1996	0	40	8	80	0.08 (0.00-2.40)		-	42.46
All	0	163	20	407	0.09 (0.01-0.81)			100.00
						0.00073	1.0 RR (95% CI)	1373

Weights are calculated from random-effects analysis. Dashed line indicates the overall weighted point estimate (0.20); diamond, same overall weighted point

estimate (95% CI). Shadow size varies relative to weight assigned to each study. Overall $I^2 = 0\%$ (P = .94). Test of RR = 1 (z = 2.14; P = .03).

Haut, JAMA Surgery 2013

- Paper used MTQIP data 803 patients
- Mortality- No difference
- DVT higher w/ IVCF (OR 1.83,1.15-2.93)
- Unadjusted PE rate higher w/ IVCF

Prophylactic Inferior Vena Cava Filter Placement Does Not Result in a Survival Benefit for Trauma Patients

Mark R. Hemmila, MD,^{*} Nicholas H. Osborne, MD,^{*} Peter K. Henke, MD,^{*} John P. Kepros, MD,[†] Sujal G. Patel, MD,[‡] Anne H. Cain-Nielsen, MS,^{*} and Nancy J. Birkmeyer, PhD^{*}

Hemmila, Ann Surg 2015

Can we Increase IVC Filter Removal?

Improved recovery of prophylactic inferior vena cava filters in trauma patients: The results of a dedicated filter registry and critical pathway for filter removal 59%

Frederick B. Rogers, MD, MS, FACS, Steven R. Shackford, MD, FACS, Jo Ann Miller, BSN, RN, CCRN, Daniel Wu, DO, Amelia Rogers, BSA, and Angela Gambler, MBA, Lancaster, Pennsylvania

Are retrievable vena cava filters placed in trauma patients really retrievable?

W. R. Leeper^{1,5} · P. B. Murphy^{1,6} · K. N. Vogt¹ · T. J. Leeper¹ · S. W. Kribs² · D. K. Gray^{1,3} · N. G. Parry^{1,3,4,5}

87%

VTE Prophylaxis in Traumatic Brain Injury (TBI)

What is Optimal VTE Prophylaxis in Traumatic Brain Injury (TBI)?

- An Example Case:
 - You are the Trauma ICU attending and recently admitted a poly-trauma patient with:
 - TBI (small intraparenchymal contusion)
 - Flail chest
 - Pelvic fracture (no hematoma)
 - Bilateral femur fractures
 - What do you order to help prevent thromboembolism (VTE)?

Balance of Risk vs. Benefit

Pharmacologic Prophylaxis

TBI Worse

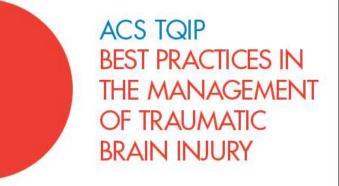
More Neurosurgical Interventions

Worse functional outcome

NO Pharmacologic Prophylaxis

VTE Event

FULL Anticoagulation


Worse functional outcome

What is Optimal VTE Prophylaxis in Traumatic Brain Injury (TBI)?

- American College of Surgeons Trauma Quality Improvement Program (ACS-TQIP)
- "Best Practices in the Management of Traumatic Brain Injury"

https://www.facs.org/quality-programs /trauma/tqip/best-practice

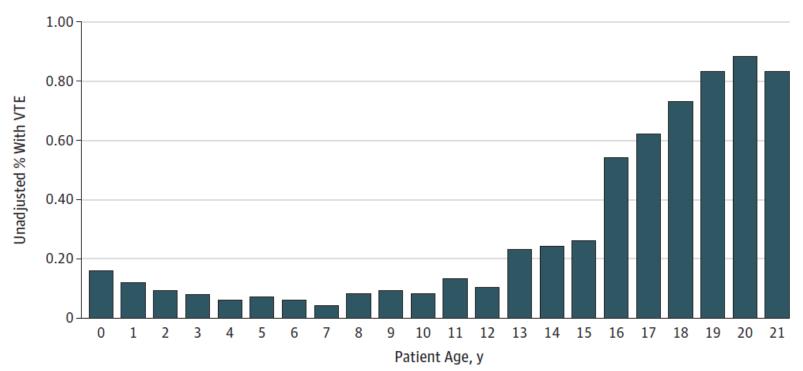
AMERICAN COLLEGE OF SURGEONS nspiring Quality: Sighest Standards, Better Outcomes

ACS-TQIP recommendations for VTE Prophylaxis in TBI

Key Messages

- Patients with TBI are at high risk for venous thromboembolism (VTE), with rates as high as 20-30%
- VTE prophylaxis should be considered within the first 72 hours following TBI in most patients. Earlier initiation of pharmacologic prophylaxis (<72 hours) appears to be safe in patients at low risk for progression of intracranial bleeding and have a stable repeat head CT scan
- Placement of a prophylactic inferior vena cava (IVC) filter should be considered in patients at high risk for progression of intracranial hemorrhage who cannot receive pharmacologic prophylaxis, including those with lower extremity long bone fractures or pelvic fractures in addition to TBI

Table 3. Modified Berne-Norwood Criteria


Low risk	Moderate risk	High risk
No moderate or high risk criteria	Subdural or epidural hematoma > 8 mm Contusion or intraventricular hemorrhage > 2 cm Multiple contusions per lobe Subarachnoid hemorrhage with abnormal CT anglogram Evidence of progression at 24 hrs	ICP monitor placement Craniotomy Evidence of progression at 72 hrs
Initiate pharmacologic prophylaxis if CT stable at 24 hrs	Initiate pharmacologic prophylaxis if CT stable at 72 hrs	Consider placement of an IVC filter*

VTE in Injured Children

When Do Children Become Adults?

Figure. Unadjusted and Adjusted Risk of Venous Thromboembolism (VTE) After Trauma Across Patient Age

Unadjusted % with VTE

Van Arendonk, JAMA Surgery 2013

When Do Children Become Adults?

- Adjusted OR 1.96 (95%CI 1.53-2.52) for 13-15 year olds
- Adjusted OR 3.77 (95%CI, 3.00-4.75) for 16-21 years
- 0-12 year olds as reference

Van Arendonk, JAMA Surgery 2013

Does VTE Occur in Injured Children?

Figure 2. Calculation of a Patient's Points Total and the Predicted Probability of Venous Thromboembolism (VTE) Given the Points Total

A Calculation of a patient's points total

	Points			
Characteristic	Model 3	Model 31		
GCS score				
Mild, 13-15	+0	+0		
Moderate, 9–12	+40	+29		
Severe, 3-8	+34	+101		
Age category, y				
0	+94	+94		
1-9	+0	+0		
10-12	+78	+78		
13-15	+120	+120		
16-17	+147	+146		
Female sex	+4	+4		
Male sex	+0	+0		
Intubation	+97	+143		
Admission to ICU	+171	+186		
Transfusion of blood products	+58	+57		
Central venous catheter placement	+61	+61		
Pelvic fracture	+33	+32		
Lower-extremity fracture	+36	+37		
Major surgery	+150	+149		
Intubation AND admission to ICU	NA	-51		
GCS category moderate AND admission to ICU	NA	+10		
GCS category severe AND admission to ICU	NA	-70		

Risk
 Predication
 Model for VTE
 in Children

Connelly, JAMA Surgery 2015

Does VTE Occur in Injured Children?

В

- Risk Predication Model for VTE in children
- Implications for Prophylaxis?

Predicted probability of venous thromboembolism

Connelly, JAMA Surgery 2015

Future of VTE Prophylaxis in Trauma

- Current recommendations are basically a "one size fits all" approach
- Can we do better?
- Do different patients require different:
 - Medications (i.e. anti-platelets, aspirin)?
 - Doses?
 - Frequency?

Precision medicine / targeted prevention

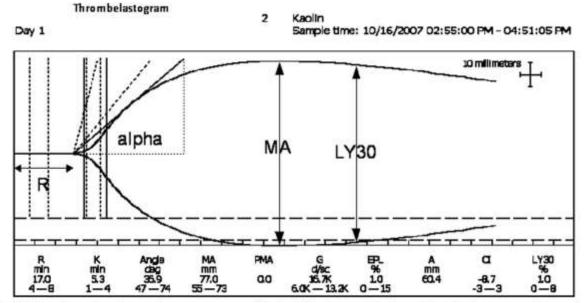


Fig. 2. A sample TEG tracing showing various parameters. The initial time to clot formation (R) is measured in minutes. Alpha angle represents the rate at which the clot is strengthening. MA measured in millimeters and represents the maximum clot strength. The percentage of clot LY30 after MA represents fibrinolytic activity.

Thrombelastography Versus AntiFactor Xa Levels in the Assessment of Prophylactic-Dose Enoxaparin in Critically III Patients

Philbert Y. Van, MD, S. David Cho, MD, Samantha J. Underwood, MS, Melanie S. Morris, MD, Jennifer M. Watters, MD, and Martin A. Schreiber, MD

- Purpose "to analyze whether TEG could be used to predict which enoxaparintreated patients would develop DVT."
- "TEG... may be used to guide dosing."

Van, J Trauma 2009

Admission rapid thrombelastography predicts development of pulmonary embolism in trauma patients

Bryan A. Cotton, MD, MPH, Kristin M. Minei, BA, Zayde A. Radwan, BS, Nena Matijevic, PhD, PharmD, Evan Pivalizza, MD, Jeanette Podbielski, BSN, Charles E. Wade, PhD, Rosemary A. Kozar, MD, PhD, and John B. Holcomb, MD, Houston, Texas

- "Admission r-TEG mA values can identify patients with an increased risk of inhospital PE."
- "Further studies... whether alternative anticoagulation strategies should be used for these high-risk patients."

Cotton, J Trauma 2012

The Future of VTE Prevention? What is on the Horizon?

Platelets are dominant contributors to hypercoagulability after injury

Jeffrey N. Harr, MD, MPH, Ernest E. Moore, MD, Theresa L. Chin, MD, Arsen Ghasabyan, MPH, Eduardo Gonzalez, MD, Max V. Wohlauer, MD, Anirban Banerjee, PhD, Christopher C. Silliman, MD, PhD, and Angela Sauaia, MD, PhD, Denver, Colorado

 "These data suggest an important role for antiplatelet therapy in VTE prophylaxis following trauma, particularly after 48 hours."

Harr, J Trauma 2013

The Future of VTE Prevention? What is on the Horizon?

Coagulation Profile Changes Due to Thromboprophylaxis and Platelets in Trauma Patients at High-Risk for Venous Thromboembolism

CASEY J. ALLEN, M.D., CLARK R. MURRAY, B.S., JONATHAN P. MEIZOSO, M.D., JULIET J. RAY, M.D., LAURA F. TEISCH, B.S., XIOMARA D. RUIZ, M.D., MENA M. HANNA, M.D., GERARDO A. GUARCH, M.D., RONALD J. MANNING, ARNP, ALAN S. LIVINGSTONE, M.D., ENRIQUE GINZBURG, M.D., CARL I. SCHULMAN, M.D., Ph.D., NICHOLAS NAMIAS, M.D., KENNETH G. PROCTOR, Ph.D.

- "Platelet function is a dominant contributor to.... hypercoagulability."
- "Antiplatelet therapy may be indicated"

Allen, Am Surgeon 2015

Acknowledgements

@elliotthaut ehaut1@jhmi.edu

- Hopkins VTE Website (with paper forms)
 - http://www.Hopkinsmedicine.org/Armstrong/bloodclots
- Patient Education Video
 - http://bit.ly/bloodclots
- Wall Street Journal article

 http://on.wsj.com/1M18Aqu
- PCORI Research in Action
 - <u>http://www.pcori.org/research-in-action/improving-patient-nurse-communication-prevent-life-threatening-complication</u>

MTQIP Services

Jill Jakubus, PA-C, MHSA Mark Hemmila, MD

HARNESSING POSITIVE DEVIANCE

PROBLEM Infant/Child Malnutrition

SOLUTION 1 Provide food

- SHOPE

SOLUTION 2 Solar Oven

THE TWIST Not all were impacted by malnutrition

QUESTION How do you get food to the hungry?

QUESTION How do you get the hungry to food?

FINAL SOLUTION Positive deviant pairing

MTQIP Services

- Voluntary
 - Reach out, accept or decline
- Facilitate
 - Pairing of centers to share data and experience
 - Reach out, accept or decline
- ACS-TQIP Report
 - Review
 - Dive into data with MTQIP tools

Analytics Guidelines PI Resources Data

Jill Jakubus, PA-C

Analytics – Shock

Dashboard

Summary

Rankings

Trends

Patient List Advanced Search

Outcomes Summary Rankings Trends Complications Drill-down

Mortality Drill-down

Utilization
Summary
Rankings
Trends
Utilization Drill-down

Risk Factors Summary Rankings Trends

Comorbidity Drill-down

Practices

VTE Prophylaxis Outcomes

VTE Prophylaxis Timing

VTE Prophylaxis Types

Hemorrhage

IVC Summary

IVC Trends

TBI Management

Timing of TBI Interventions

TBI Intervention

PRQ
Over/Under Triage
Triage Matrix Drill Down

Shock
Mortality
Penetrating
Blunt
Intervention Timing
Resuscitation
Operative Interventions
Angiography Interventions

Details

Administrative

By Hospital Outcomes

By Hospital Process Measures

Analytics – Shock

Dashboard

Summary

Rankings

Trends

and the second se
1 N H 1
-
-
100 100
1000
10
1 A A A A A A A A A A A A A A A A A A A
1
100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20100

?

Patient List Advanced Search

Outcomes
Summary
Rankings
Trends
Complications Drill-down

Mortality Drill-down

Utilization
Summary
Rankings
Trends
Utilization Drill-down

Details

Details

Risk Factors Summary Rankings Trends

i chus

Comorbidity Drill-down

Practices

VTE Prophylaxis Outcomes

VTE Prophylaxis Timing

VTE Prophylaxis Types

Hemorrhage

IVC Summary

IVC Trends

TBI Management

Timing of TBI Interventions

TBI Intervention

PRQ Over/Under Triage Triage Matrix Drill Down

Shock
Mortality
Penetrating
Blunt
Intervention Timing
Resuscitation
Operative Interventions
Angiography Interventions

Administrative

By Hospital Outcomes

By Hospital Process Measures

Available Now

Analytics – Shock

Practices // Shock Mortality × Shock Patients (Mortality) - MTQIP - All 95% Confidence Interval Y LEGEND MTQIP - All Other Hospitals FILTERS 7 R HOSPITALS 7 × 40 50 100 32 40 80 24 30 60 10 20 16 40 10 APPLY առեռում 8 20 0 0 COHORT Shock Patients (Mortality) 2008 2009 2010 2011 2012 2013 2014 2015 0 Cohort 1 (All) DEAD **Shock Mortality** MTOIP - All -P Value (unadj) Cases ALL Unadj -NO SIGNS OF LIFE Include DOAs Shock Patients (Mortality) ISS Shock with No Intervention (Mortality) ALL Shock with Angio (Mortality) AGE ALL Shock with Operation (Mortality) PERIOD GROUP Shock with Angio and/or Operation (Mortality) Default Periods Available Now **DEFAULT PERIODS**

Copyright © 2016, MTQIP. All Rights Reserved. | Copyright © 2016, Arbor/Metrix, Inc. All Rights Reserved.

Analytics – Benchmark Filter

	Outcomes // Trends						
•	FILTERS IN INTERS						
£	×						
1011 C 101							
	APPLY						
	APPLY						
	COHORT						
	Cohort 1 (All)						
	Cohort 1 (All)						
	Cohort 1 (All) Cohort 1 (All) Cohort 2 (Admit to Trauma Service)						
	Cohort 1 (All) Cohort 1 (All) Cohort 2 (Admit to Trauma Service) Cohort 3 (Blunt Multi-System)						

Analytics – Benchmark Filter

Ê	Outcomes // Trends				
•	FILTERS IN INTERS				
£	×				
	APPLY COHORT Cohort 1 (All)				
	Cohort 1 (All) Cohort 2 (Admit to Trauma Service) Cohort 3 (Blunt Multi-System) Cohort 4 (Blunt Single-System) Cohort 5 (Penetrating) Cohort 6 (Admit to non-Trauma Service)				
	Cohort 7 (Benchmark)				

Guidelines – MTQIP Anticoagulation Reversal

	Interventions						
	General	Major Blood Loss	Critical Blood Loss (Life-threatening)				
Dabigatran (Pradaxa)	Stop anticoagulant IV access – large bore Hemodynamic optimization	 Antifibrinolytic Oral activated charcoal (if last dose within 2 hrs) Hemodialysis 	 Major blood loss interventions Idarucizumab (Praxbind) 				
Apixaban (Eliquis)		 Antifibrinolytic Oral activated charcoal (if last dose within 6 hrs) 	 Major blood loss interventions Unactivated or activated 4- 				
Rivaroxaban (Xarelto)		 Antifibrinolytic Oral activated charcoal (if last dose within 8 hrs) 	factor PCC*				

Available Now

Guidelines – MTQIP Anticoagulation Reversal

Interventions							
	General	Major Blood Loss	Critical Blood Loss (Life-threatening)				
Dabigatran (Pradaxa)	Stop anticoagulant IV access – large bore Hemodynamic optimization	 Antifibrinolytic Oral activated charcoal (if last dose within 2 hrs) Hemodialysis 	 Major blood loss interventions Idarucizumab (Praxbind) 				
Apixaban (Eliquis) Rivaroxaban (Xarelto)		Andexanet Alpha					

Guidelines – MTQIP Anticoagulation Reversal

Thromb Haemost, 2012. 108(2): p. 217-24. LOE II Maurice-Szamburski, A., T. Graillon, and N. Bruder, Favorable outcome after a subdural hematoma treated with

44.

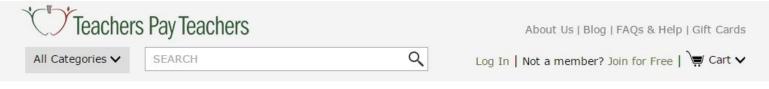
- feiba in a 77-year-old patient treated by rivaroxaban. J Neurosurg Anesthesiol, 2014. 26(2): p. 183. LOE V
- Neyens, R., et al., Dabigatran-associated subdural hemorrhage: using thromboelastography (TEG((R))) to guide decision-making. J Thromb Thrombolysis, 2014. 37(2): p. 80-3. LOE V
- Perzborn, E., et al., Reversal of rivaroxaban anticoagulation by haemostatic agents in rats and primates. Thromb Haemost, 2013. 110(1): p. 162-72. LOE IV
- Pollack CV, Reilly PA, Eikelboom JW, et al. Idarucizumab for dabigatran reversal. NEJM, 2015. 373: p. 511-20. LOE II
- Pragst, I., et al., Reversal of dabigatran anticoagulation by prothrombin complex concentrate (Beriplex P/N) in a rabbit

- 62. Warkentin, T.E., et al., *Recombinant factor VIIa (rFVIIa) and* hemodialysis to manage massive dabigatran-associated postcardiac surgery bleeding. Blood, 2012. 119(9): p. 2172-4. LOE V
- Wong, H. and D. Keeling, Activated prothrombin complex concentrate for the prevention of dabigatran-associated bleeding. Br J Haematol, 2014. 166(1): p. 152-3. LOE V

64. Xu, Y., et al., Differential profiles of thrombin inhibitors (heparin, hirudin, bivalirudin, and dabigatran) in the thrombin generation assay and thromboelastography in vitro. Blood Coagul Fibrinolysis, 2013. 24(3): p. 332-8. LOE V

 Zhou, W., et al., Hemostatic therapy in experimental intracerebral hemorrhage associated with the direct thrombin inhibitor dabigatran. Stroke, 2011. 42(12): p. 3594-9. LOE IV

Available Now

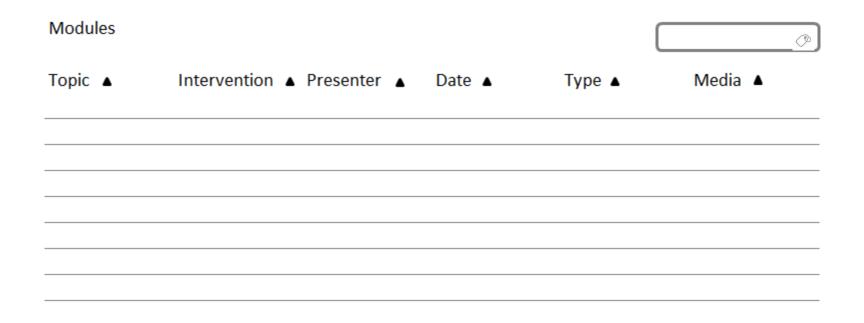

PI Resources – Hurley Module

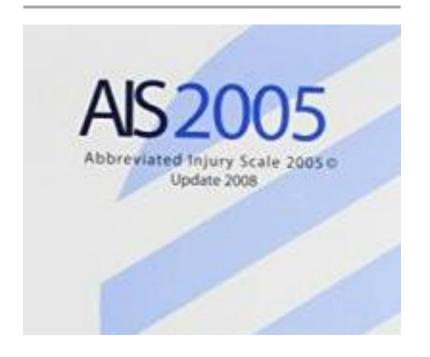

MEASURES OF ED EFFICIENCY

- ED dwell time
- Time to OR
- Time to CT
- Time to vitals
- Time to IV

Available Now

PI Resources – PI Library




PI Resources – PI Library

	Name	Time	Artist 🔺	Album	Genre	My Rating	Play Count	Last Played
	🗹 True Faith 🛛 🔿	5:49	New Order 🛛 😔	International - Th 📀	Pop		8	7/2/2007 10:
	🗹 Photograph	3:54	Nickleback	Promo CD	Rock		39	10/12/2006 1
	🖬 Nobody Knows	3:57	P!nk	I'm Not Dead	Рор		5	7/8/2007 8:0
	🖬 I Have Seen the Rain (Featuring J	3:29	P!nk	I'm Not Dead	Рор		6	7/8/2007 8:0
	🗹 Who Knew	3:28	P!nk	I'm Not Dead (Intern	Рор		204	7/8/2007 8:0
4	🗹 No Surprises 🔹 🔘	3:49	Radiohead 🔘	Coastal Chill 🔹 🕄	Easy Listening		152	11/7/2006 7:
	🗹 Unfaithful	3:46	Rihanna	A Girl Like Me	Рор		126	7/2/2007 10:
	🗹 Talking in Your Sleep	7:31	The Romantics	New York: A Mix Ody	Electronica			
	🖬 I Wish I Was a Punk Rocker (With	2:30	Sandi Thom	Smile It Confuses	Music		76	11/9/2006 6:
	🗹 Sweet Surrender (Tiësto Mix)	7:03	Sarah McLachlan (TD		Trance			
	🗹 Two Beds and a Coffee Machine	3:27	Savage Garden	Affirmation	Рор		2	7/2/2007 10:
	🗹 Santa Monica	3:34	Savage Garden	Savage Garden	Рор		3	7/8/2007 8:0
	CAFFEINE IN THE MORNING SUN	4:22	The Sleepy Jackson	Coastal Chill	Easy Listening			
	🗹 Happy Endings	4:44	Something for Kate	Coastal Chill	Easy Listening			
	🗹 I Believe (When I Fall In Love	4:51	Stevie Wonder	High Fidelity Soundtrack				
	ZLBM	4:12	switchfoot		Soundtrack			
	🗹 stars (sophie muller watermark)	4:08	switchfoot		Alternative		43	7/2/2007 10:
	Referência rápida de CSS 🛛 🔳		Tableless.com.br	Tableless.com.br - W	Podcast			
	20 Good Reasons CLEAN	3:49	Thirsty Merc	20 Good Reasons - Si	Pop		6	7/2/2007 10: -

PI Resources – PI Library

Data – AIS 2015

- Anticipated release early 2016
- MTQIP request for conversion as group to protect data integrity at interval TBD
- No conversion at this time interval planned per TQIP

Conclusion

Evaluations

- Fill out and turn in
- Questions?
- See you in May